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SUMMARY 

Motivated by the noise-boundary layer transition problem in supersonic 
tunnels, a study of the noise field and the noise-laminar boundary layer 
interaction was made. The noise field was modeled as a Mach wave radiation 
field consisting of discrete waves emanating from coherent turbulent entities 
moving downstream within the supersonic turbulent tunnel wall boundary layer. 
The individual disturbances are likened to miniature sonic booms and the lami- 
nar boundary layer is strafed by the waves as the sources move downstream. 
The mean, autocorrelation, and power spectral density of the field are ex- 
pressed in terms of the wave shapes and their average arrival rate. The pre- 
dicted rms amplitude distribution across the wind tunnel test section and the 
shape of the power spectral density curve agree with experimental data quite 
well. The emphasis in the analysis of the interaction of the wave field with 
the laminar boundary layer was on the weak shock behavior. The waves are 
refracted and focused by the boundary layer, and the two-dimensional linear- 
ized shock focusing equations, which are known, were rederived using the 
method of geometric acoustics for a nonuniform moving medium. The shock ray 
path differential equation was determined, and some typical ray trajectories 
through the boundary layer were computed. The waves are focused at what is 
termed the caustic layer. The caustic layer height within the laminar bound- 
ary layer was computed for a range of free-stream Mach numbers and source-to- 
free-stream convection velocity ratios. The heights were found to lie in the 
outer half of the boundary layer. A sonic boom theory scaling law which re- 
quires the value of the radius of curvature of the ray path at the caustic 
was used to estimate the amount of focusing at the caustic. Some example 
calculations showed that the focus factors of 2 to 6 occurred for incoming 
shock strengths of 1 to 0.01 percent of the free-stream pressure. Another 
element considered was the thickness of the very weak shocks associated with 
the radiation process. Shock thickness in the radiation pressure field could 
affect significant portions of the disturbance pressure signatures under cer- 
tain conditions. The resulting smoothed shock fronts would tend to reduce 
the high-frequency content of the modeled noise spectrum and reduce the 
intensity of focusing because the focusing is a high-frequency phenomenon. 
An expression giving the ratio of the shock front thickness to laminar boundary 
layer thickness as a function of Mach number and Reynolds number shows that 
at a length Reynolds number of lo6 this ratio may be close to one; for lower 
Reynolds numbers the ratio progressively increases. It is not clear whether 
the sound focusing effectively promotes early transition. Additional observa- 
tions concerning the interaction are presented. 
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1. INTRODUCTION 

The phenomenon of boundary layer transition is a process which is sen- 
sitive to the quality of the flow environment, and the flow environment in 
wind tunnels can be rather harsh, especially in supersonic tunnels. Thus the 
specter of free-stream disturbances has haunted the transition investigator 
more than any other tunnel user. This problem of the influence of the tunnel 
disturbance environment on transition provided the motivation for the present 
study. The interaction between acoustic disturbances and the laminar boundary 
layer in supersonic wind tunnels is examined. The study focuses on one aspect 
of the interaction which heretofore has not been discussed. The present report 
is a revised and extended version of a previous paper (ref. 1). 

In well designed unheated supersonic wind tunnels it has been found that 
the greatest source of free-stream disturbance, especially at the higher Mach 
numbers, is the noise field generated by the turbulent boundary layers on the 
tunnel nozzle walls (refs. 2 to 5). It is this type of acoustic field which 
is considered in the present analysis. While the discussion is centered on 
the nc.ise-laminar layer interactions occurring in wind tunnels, it is important 
to note that such interactions also occur on most flight vehicles. The boundary 
layer on the fuselage of flight vehicles is usually turbulent, and the radiated 
noise interacts with the laminar boundary layer near the leading edges of 
wings or fins. Thus the problem is not confined to the wind tunnel setting. 

It is generally accepted that boundary layer transition on supersonic 
and hypersonic wind tunnel models is greatly affected by the noise radiated 
from the tunnel wall boundary layers (refs. 3, 6 to 9). Among the more prom- 
inent observations that have led to this acceptance are: (1) flight transition 
Reynolds numbers are generally higher than those from wind tunnels (ref. 10); 
(2) noise dominates the free-stream disturbances at the higher Mach numbers 
(refs. 2 to 5); (3) in many wind tunnels the transition Reynolds number, Re , 
has been found to vary inversely with free-stream fluctuating pressure leve s; f 
(refs. 3, 6, 7, 11 and 12); (4) transition results from many tunnels and flow 
conditions have been correlated using parameters that are assumed to be related 
to the noise field (refs. 6, 8, 13 to 16); (5) the space time cross-correlation 
curves of Kendall (refs. 17 and 18) showed that large disturbances in the model 
laminar boundary layer were related to the incoming noise field; and (6) some 
attempts at shielding models from the noise or exposing the model to laminar 
nozzle boundary layers have resulted in increased lengths of laminar flow 
(refs. 6, 18 and 19). 

Not all evidence, however, conveniently fits the noise-transition hypoth- 
esis. The so-called unit Reynolds number effect (increase in Re with 
increase in unit Reynolds number) is often thought to be due to t e 5 tunnel 
noise, but the effect is not universally found in wind tunnels (refs. 20 to 
24), while it is found in ballistic ranges where there is no boundary layer 
noise present (refs. 25 to 27). In higher Mach number heated tunnels, some 
researchers have concluded that the noise did not dominate the transition 
process (ref. 28). Not all data fit the transition correlation formulas 
(ref. 29 for example; and one can show that the JPL 20-inch data of ref. 30 
also does not fit). Omen and Horstman (ref. 31) changed the free-stream 
noise level by changing the nozzle coolant gas from helium to air and no 
change in Re was observed on a slender cone at M = 7.4. 
transition re&ains an enigmatic phenomenon. 

Boundary layer 
Informative and interesting 

reviews of the sleuthing efforts over the past 20 years may be found in the 



widely cited papers of Morkovin (refs. 32 to 37). 

If the noise from the tunnel turbulent boundary layers indeed affects 
model transition results in supersonic tunnels, there must be an interaction 
mechanism (or mechanisms) present between the noise field and the laminar 
layer that would promote transition. On simple flat plate and cone models 
it is thought that the incoming noise field generates and perhaps feeds 
energy into Tollmien-Schlichting instability waves (TS waves) and that these 
waves then play an important part in transition. The process by which the 
noise field induces and affects TS waves, termed the receptivity process 
(refs. 33 and 36), is largely unknown. While the motivation for the present 
study was the noise-transition problem, the objective was to take a closer 
look at the noise-laminar layer interaction rather than a closer look at the 
noise-transition problem. 

In the present study a very simple model of the noise radiation process 
is adopted. The radiated field is assumed to be composed of numerous discrete 
waveforms, each of which emanates from coherent turbulent entities that move 
downstream within the turbulent wall boundary layer at less than the free- 
stream velocity. The waveforms contain shocklets and are like miniature 
sonic booms which radiate from the moving fluid structures because of their 
supersonic speeds relative to the outer flow. Because the randomly spaced 
sources move downstream, their wave systems strafe the test-section models. 
The interaction between the noise field and the model laminar boundary layer 
is treated as being the refraction through the laminar layer of these weak 
waves as the field moves downstream. The analysis is restricted to the outer 
supersonic portion of the boundary layer, and only the shocklet portions of 
the incoming wavefronts are considered in the mathematical formulation. 

A description of the wave radiation model is presented and its credi- 
bility is discussed by examining the physical basis of the model and comparing 
its features with those described in published turbulent boundary layer and 
tunnel noise measurement reports. One of the more interesting and important 
features of the noise model is that it allows some of the statistical prop- 
erties of the field at a point in the test section to be expressed quite 
simply. The equations presented are well known in the fields of signal 
analysis and statistical communication theory. 

Concerning the interaction analysis, the present results are obtained 
using two different approaches. In the first approach a linearized analysis 
that was first used by fluid dynamicists in the 1950's to analyze weak shock 
wave boundary layer interactions is used. In the second approach the results 
are derived using geometric acoustics and utilizing an energy density invari- 
ant for acoustic waves propagating in a nonuniform moving medium. This 
invariant was first derived by Blokhintsev (ref. 38) and has been used to 
describe sonic boom propagation (ref. 39) (the sonic boom is a weak shock 
wave system). The wavefronts are found to be focused in a region of the 
boundary layer. Borrowing wave-propagation terminology, this focal region 
is herein termed the "caustic region." Examples of wave behavior at a caustic 
are cited and estimates of the amount of focusing are presented. The caustic 
region height is estimated and is found to vary with tunnel Mach number, and 
the height is compared with the published heights of the experimentally deter- 
mined region of maximum fluctuation level. While it is customary and most 
often quite appropriate to treat a shock as a discontinuity, for weak, acoustic- 
strength shocks the thickness can be appreciable. The thickness of weak shocks 
are analyzed and the focusing results are qualitatively reconsidered in view 
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of the finite thickness shock. Experimental evidence relating to the exis- 
tence of the caustic region is reviewed. Some thoughts on the relevancy of 
the caustic region to transition are presented, and a few receptivity-related 
comments are offered. Finally, a short discussion concerning the efficacy 
of the microphone flat plate and the fluctuating pitot pressure methods of 
measuring the tunnel noise field is presented. 

The most thorough analytical study to date of the interaction between 
the noise and the laminar boundary layer in supersonic wind tunnels is that 
of Mack (refs. 40 and 41). His calculations were for frequencies in the range 
where Kendall's free-stream measurements (ref. 18) showed significant energy 
content. One finds, however, that the wavelengths considered were long in 
comparison to the laminar boundary layer thickness (10 6 - 350 6). Thus 
Mack's results can be considered to describe the interaction with the lower 
frequency components of the noise field, while the present results describe 
the interaction with the weak shock fronts, or, in the sense of Fourier decom- 
position, the very high-frequency components of the field (frequency -tco>. 



2. DESCRIPTION OF NOISE MODEL 

To understand the nature of the interaction between the noise field and 
the laminar boundary layer one needs to know more about the structure and 
dynamics of the noise field. In spite of the great concern over the noise- 
transition problem in supersonic tunnels, the experimental effort that has 
gone into obtaining and correlating transition results far outweighs that 
which has been expended to understand the noise field. At least part of 
the reason for this situation is that definitive test section noise measure- 
ments are very difficult to make. In view of these uncertainties about the 
noise field and of the simple approach taken here to analyze the noise- 
laminar layer interaction, the noise field modeling is done in a very simple 
fashion. 

Model and its Physical Basis 

Inasmuch as the detailed noise measurements from which one can confidently 
extract a noise field model are not yet available, one must turn to the source 
of the noise, the turbulent boundary layer, to obtain further guidance. The 
literature on turbulent shear flow is immense and growing, and the prevailing 
views on the subject have been undergoing considerable change. In the mid- 
1950's the older view of turbulence as a mean flow plus random fluctuations 
began to give ground to a more mechanistic view. This was the result of 
increasing recognition that there appeared to be some order or coherent 
motion in turbulent flows. The trend in experimental research then shifted 
to the revelation and exploration of ordered or quasi-ordered motions, and 
within the last 10 years, with the help of sophisticated electronic techniques, 
computers, and optical methods, much information has been acquired about the 
structure of the turbulent boundary layer. Reviews of this research may be 
found in references 42 to 45. Some of the latest findings are contained in 
the coherent structure workshop report (ref. 46). 

In spite of the recent concentrated research efforts, much remains unclear 
about the turbulence mechanisms and the coherent structures within the turbu- 
lent boundary layer (ref. 46). Nevertheless, there is now general agreement 
that within the boundary layer there are events or flow processes which appear 
to be quasi-cyclic over space and time, and that these structures dominate 
the behavior of turbulent flows. These boundary layer flow processes comprise 
the quasi-ordered structures which move downstream. A variety of flow processes 
have been discovered, and these have been described using such terminology 
as streaks (but no streakers in recent years), bursting, breakdowns, and 
ejections. The hope is that a coherent synthesis of the findings will be 
reached and that a relatively deterministic picture will emerge. 

Most of the structurally oriented turbulence research has been conducted 
at low speeds and low Reynolds numbers, but it seems reasonable to assume 
that in the supersonic turbulent boundary layer the radiated noise will be 
closely tied to coherent structures of the same genus as those in low speed 
flows. Hence, the noise field is assumed to emanate from coherent structures 
or entities which are randomly spaced along the wall and moving downstream. 
The field is envisioned as resulting from interactions between momentum 
deficient fluid regions and the faster outer flow. Specifically it is modeled 
as being the result of interactions in which the faster flow is supersonic 
with respect to the low speed fluid entity, and thus the noise radiation is 
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in the form of weak shock wave systems. This type of radiation is called Mach 
wave radiation (ref. 47). 

The noise radiation model is illustrated in figure 1. In the model the 
turbulent boundary layer is simply replaced by randomly spaced bodies next 
to the surface which travel downstream at less than the free-stream velocity. 
These "wall bodies" are slow enough so that the free-stream is supersonic 
with respect to them, and owing to their downstream movement any object in 
the test section would be strafed by the individual wave systems. The model 
may be viewed as a discrete version of Phillips' virtual, spatially random, 
moving wavy wall (ref. 47), and is akin to the displacement thickness acous- 
tical model of Liepmann (ref. 48). As the free-stream Mach number, M,, 
increases more of the flow processes comprising the quasi-ordered flow struc- 
tures acquire supersonic relative velocities and thus emit Mach wave radiation, 
and the streamwise accelerating fluid entities can radiate over a longer 
period of their lifetime. Again, for the present purposes, a simple model 
was deemed adequate. 

Features Compared With Published Findings 

In this section a check on the credibility of the model is made by a 
comparison of some of the model features with published findings. The compar- 
isons are mainly qualitative. If the model were to be carried to the extreme, 
it could be quantified. By actually specifying the shapes of typical wall 
bodies and their speeds, one could use sonic boom theory (refs. 49 and 50) 
to determine the strengths and shapes of the radiated wave systems. With 
the additional specification of the average spacing between the bodies, the 
expressions which will be given later could then be used to estimate the values 
of various statistical properties of the field. 

Optical evidence of wave field. - The noise field in the model is taken . .- . - --- 
to be composed of the weak shock wave systems from the downstream moving wall 
bodies. There is ample evidence that the turbulent boundary layer does emit 
a Mach wave field from downstream moving sources, and perhaps the most appealing 
evidence comes from optical detection means. Such evidence is most prominently 
found in schlieren and shadowgraph photographs taken of supersonic ballistic 
range models having turbulent boundary layers (refs. 51 to 53). In 
ballistic ranges there are no turbulent boundary layers on the facility windows 
to mask weak disturbances in the test chamber, and photos reveal a structure 
of weak waves emanating from the model turbulent boundary layer. (It appears 
that a Mach wave radiation field from a Mach 6 wind tunnel model may be 
visible in fig. 14 of ref. 54.) The wave angles of the radiation pattern are 
greater than the local Mach angle and this indicates that the sources are 
moving downstream. Many supersonic jet noise reports also show photos of 
Mach wave radiation from turbulent shear layers (refs. 55 and 56). While it 
is difficult to infer from the ballistic range photographs that shocklets 
are present in the noise field emanating from the fully turbulent regions, 
shocklets from turbulent spots in the transition region are often readily 
identifiable (ref. 51). Microphone measurements of the noise field from super- 
sonic jets reveal shocklet-type pressure traces (ref. 56). 

Convection velocities. - The fact that the sources of the noise field are 
convected downstream is an important feature retained in the model. In addition 
to the optical evidence of downstream movement, free-stream measurements of 
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the convection velocities of the noise field have been reported. These have 
been made with hot-wire anemometers using either of two techniques. In the 
first method, two hot wires are used and space-time cross-correlation measure- 
ments are taken. In the second method, which is appropriate for the case in 
which the radiated noise clearly dominates the free-stream disturbance field, 
a single wire is used along with special assumptions about the field. 

Convection velocity results from a number of investigations are shown 
in figure 2. Some comments are in order. The data came from five different 
tunnels. There is considerable scatter in the data and this reflects the dif- 
ficulty in making these measurements. The data show a trend of increasing 
convection velocity with tunnel Mach number and this is consistent with the 
fact that with increasing M, faster moving flow processes can radiate via 
Mach wave radiation. The relative Mach number between the free-stream and the 
convected field is greater than one. Values of the mean relative Mach number 
vary from 1.3 at M, = 2 to 2.4 at M, = 8 (at M = 4.5, the spread in the rela- 
tive Mach number ranges from 1.3 to 2.6). Themdual-wire convection velocity 
results shown are values obtained from dividing the separation distance between 
the wires by the time delay of the peak in the cross-correlation curve. This 
method of defining a convection velocity has frequently been used. By using 
the phase information in the Fourier transform of the cross-correlation curves, 
the convection velocity as a function of frequency may also be obtained. 
Kendall (Moo = 4.5) published such information for one separation distance 
(ref. 17), and found considerable dispersion (the results are also shown in 
fig. 15 of ref. 58). At the upper end of the spectrum the convection speed 
was nearly constant at 0.7 times the free-stream velocity u,, but at the lower 
end there was a rapid drop in speed. The convection speed of the lowest fre- 
quencies measured was found to be slightly less than 0.4 urn. In contrast to 
these results, Owen et al., (ref. 7), claim to have found no dispersion in two 
hypersonic tunnels, with the convection velocity remaining constant at 0.7 u,. 
No details are given. In an earlier report Owen and Horstman (ref. 31) pre- 
sented hot-wire power spectra results from one of the tunnels, and the frequency 
range covered was about 10 Hz to 20 kHz. If this same frequency range was in- 
cluded in the later cross-correlation work (ref. 7), it should have been suf- 
ficient to reveal any dispersion. The apparent lack of dispersion at hyper- 
sonic speeds raises the possibility that at the higher Mach numbers dispersion 
may not be significant. The dispersion problem will be discussed further in 
a later section. 

The large dispersion found by Kendall at M, = 4.5 must be considered sig- 
nificant. It renders questionable the technique of defining a convection 
velocity from broad-band correlation curves using the quotient of the separation 
distance and the correlation peak time delay. Dispersion indicates that flow 
structures are traveling at different speeds, and when large dispersion is 
found it usually becomes important to know what kinds of sources are traveling 
at what speeds. The problem is difficult to unravel. In a later section it 
will be shown that one's intuition in relating frequency to size and speeds 
of eddies may not be a suitable guide. When the problem is better understood 
a distribution of sizes, shapes, spacings, and convection speeds could be given 
to the wall bodies in the present model. 

Amplitude distribution across test section. - The wave systems emanating 
from the wall bodies may be likened to miniature sonic booms. It is interesting 
to note that sonic boom work has been conducted in supersonic wind tunnels 
throughout the last 20 years using miniature models whose lengths, l/2 to 10 cm, 
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(refs. 59 and 60), would probably be typical of the length of the wall bodies 
in many tunnels. Results from sonic boom studies are used here to determine 
the uniformity of the wall body radiated noise fields. Measurements of the 
intensity of the noise field across a test section have been reported (refs. 
2, 3, 61), and in these cases the rms level of the field has been found to 
be uniform except in the immediate vicinity of the wall boundary layer. A 
possible exception has been reported in reference 62 where noise and flow 
nonuniformities were found to focus along the centerline in a small Mach 5 
axisymmetric nozzle. However, these nonuniformities were traced to disturbances 
originating from nozzle-wall machining errors. 

A probe inside a test section receives signal contributions from sources 
located around the test section. When the probe is in the center of the test 
section it receives nearly equal direct contributions from all sources around 
the section (or equal contributions if the test section is circular). As 
the probe is moved off the centerline it receives stronger signal contributions 
from the closer wall regions and weaker ones from the opposite wall regions. 
Given a location inside the test section, the problem is to evaluate the total 
contribution from all regions around the test section. Sonic boom theory 
provides laws which describe how a weak shock signal decays with increasing 
distance from the source, and these laws can therefore be used to evaluate 
signal contributions from the various wall regions. Consequently, the uniformity 
of the total signal can be evaluated by comparing the signal sums for various 
points within the test section. This was done for both a circular-and square- 
shaped test section and the values were found to be quite uniform throughout 
most of the test section. The details of this exercise are presented in Appendix 
A. It is thus concluded that the wall body model gives a uniform rms noise 
field across most of the test section in agreement with the experimental 
observations. 

Free-stream spectra and other statistical properties. - The wall body _ . _ -. _ - - . ~~___ - -- ----_.-- -. - 
model is well suited to the task of describing some of the statistical proper- 
ties of the radiated noise field. With assumptions imposing additional order 
on the model, the resulting statistical expressions turn out to be rather 
simple. Specifically, the analysis requires that there be some regularity 
to the shapes of the waveforms, and hence to the bodies. The feature of the 
random spacing of the bodies is retained. The simplest model in this case 
would be one in which all of the bodies have identical shapes. Because of 
its simplicity, this model will be adopted initially, but it will be seen later 
that the results can be generalized to a much more complicated wave field. 

Given a field of randomly spaced identical waveforms, the problem is to 
determine various statistical quantities such as the mean, variance, and 
power spectral density (psd) of the fluctuations as sensed by a transducer 
at the center of a test section. As one might expect, the shape of the 
waveforms is quite important. It is thus necessary to keep in mind the fact 
that for a given wall body and its radiated wave pattern, the particular wave 
form sensed by a probe would depend on the flow quantity or quantities to 
which the probe is sensitive (e.g., static pressure, mass flux, etc.). For 
the weak disturbances considered here, the geometrical shape of the detected 
wave signature would be similar for many of the commonly measured flow quan- 
tities. Thus it would not be necessary to tag a wall body with a different 
geometrical wave shape for each flow quantity considered. 

For weak disturbances the transducer system output signal can be considered 
as the electrical analog of the linear superposition of the individual flow 
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input pulse signals. For the analysis, the transducer system is first replaced 
by a special linear system. It is well known that the response or output of 
a linear system to any type of signal can be expressed, via the superposition 
principle, in terms of the system's impulse response function, h(t). The 
impulse response function is a function of time, t, which represents the output of 
the system when subjected to unit impulse input signal. The solution to the 
problem of the output of a linear system subjected to the random arrivals of 
unit impulses has been known for many years. This fact is taken advantage 
of by employing the tricks of (1) specializing h(t) of the linear system to 

be identical to the pulse shapes of the incoming fluid pulses, and (2) replacing 
the incoming fluid signal consisting of randomly spaced pulses by similarly 
randomly spaced unit impulses. In this situation the output of the linear 
system is a signal which is analogous to the output of the real transducer 
system. This approach to the problem is depicted in figure 3. The solution 
to the problem merely requires the adoption of existing formulas. Different 
waveforms can be modeled by simply changing h(t). 

Some of the needed results (mean and variance of output signal) are em- 
bodied in what is sometimes called Campbell's theorem (based on Campbell's 
1909 results - ref. 63). Perhaps the most frequently discussed problem of the 
response of a linear system to random impulsive inputs has been the shot noise 
problem. This problem was analyzed in the classic paper by Rice (ref. 64). 
Other analyses may be found in a number of books; the present analysis was 
taken from Lee's book (ref. 65). The particular random process describing the 
arrival times of the pulses assumed in the analysis is the so-called Poisson 
process. The derivation of the Poisson probability distribution and the as- 
sumptions involved may be found in a number of sources (ref. 66). The Poisson 
process has been found to adequately describe many random processes in which 
one counts the number of times an event occurs during some given time interval 
(e.g., emission of electrons from a substance, telephone calls received, 
traffic accidents); it will be assumed to be appropriate here. For waves 
with identical pulse forms f(t),and having an average arrival rate of ~1, 
the results are co 

Mean: p=Ci f(t) dt 
-co m 

Autocorrelation: R(-c) = p2 + c1 
I 

f(t)f(t+-c) dt 

Power spectral density: 
03 

S(w) = ;&i(w) + 2 ,F(u),~ 

where F(w) = 
I 

f(t) e-iWt dt , 
-m 

- 
8(w) is the Dirac delta function, i = J-1, and w is the angular frequency. 
The mean-square value of the signal is the value of the autocorrelation 
function at zero time delay, i.e., R(0). 
R(0) - n2. 

The variance of the signal is 
(There is some arbitrariness in where the 271 factor is placed in 

the power spectral density function; S(w) as given here is consistent with m 
the result that the mean-square value of the signal equals 

I 

co I 
S(w)dw, which 

by symmetry is 2 S(~)dw.) -03 
0 



The statistical properties of the signal are seen to depend in a simple 
manner on the shape of the pulses and their average arrival rate. It is 
important to note that the shape of the power spectral density curve is given 
by the Fourier transform of the pulse shape and does not depend on the average 
arrival rate. The arrival rate is only an amplitude factor. In this connection 
one might recall the sound of audience applause; as more people begin to clap 
one senses an increase in the noise intensity but no shift in the spectrum. 

As stated earlier, the basic model is flexible enough to allow for a 
more complex field. Consider the case in which the pulses all have similar 
shapes but differ in amplitudes. If the pulse amplitude A is a random 
variable with finite variance,and if f(t) now represents the basic pulse 
shape, the new results are identical to the proceeding ones, with the following 
exeptions: c1 is replaced by c~x in the expression for the mean,and by 
aA2 in the expressions for the autocorrelation and psd, where the bar denotes 
the average value (ref. 67). The model can be further generalized to allow for 
a variety of pulse shapes to exist in the field. If n different wave shapes 
are considered to be present in the field, then n linear systems are to be 
assumed, with each having as input a train of Poisson distributed unit impulses. 
The average arrival rate for each type of pulse must be specified. The total 
signal is the sum of the outputs from each of the systems. The analysis is 
greatly simplified if all of the input pulse trains are considered to be 
statistically independent of each other (the cross-correlation functions are 
not zero, however, because each signal has a nonzero mean). The results may 
be written as 

Mean: fi(t) dt 

Autocorrelation: 

Power spectral density: s(w) = p2 6(w) + $y; ai IFib) I2 

As the final generalization one can again consider that for each wave shape 
there is a distribution of amplitudes. In this case the cli are replaced - 
by ai A. 1 in the expression for the mean,and by ai Ai in the remaining two 
expressions. 

The remaining portion of this section will be devoted to a crude testing 
of the statistical features of the model. As noted earlier, the shape of the 
power spectral density curve depends only upon the shape of the waveform and 
not upon its amplitude or average arrival rate. Thus the shape of the psd Curve 
is the easiest model feature which can be tested by comparisons with published 
data. A one-waveform family will be used here and the comparison data will 
be that of Kendall (refs. 18, 63).* Kendall published spectrai data ob- 
tained over a wide range of Mach numbers from the JPL 20-inch tunnel. The 
spectra amplitudes were plotted using an arbitrary scale and hence only the 
shapes of the curves are available. The "test" of the model is merely that 
of seeing if one can find a pulse shape, f(t), which suits the data and 
which is physically plausible in some sense. An infinite number of pulse 
shapes can give the same psd; unfortunately, there is no pulse-shape data 
available for guidance here. Concerning further testing of the model it may 

*Spectrum data for M = 4.5, Re/cm = 7.2 x lo4 was obtained from private 
communication to I. E. Beckwith from J. M. Kendall, Feb. 1976. 
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be noted that in most experiments a high-pass filter is used, and thus the 
value of the mean of the signal is not available for comparison purposes. In 
these cases one may use f(t)'s based on what is expected in the free-stream, 
and the preceding equations may still be used providing the u's are ignored. 
The mean-square value of the signal reported should correspond closely to the 
signal variance (depending on how much of the low-frequency portion of the 
spectrum was removed), and thus to the models' R(0) with the p ignored. 

Before presenting the test results, it is instructive to consider some 
general spectral properties of simple pulse shapes. Some of the remarks 
presented are based on findings from rather limited experimentation with dif- 
ferent wave shapes. As may be seen from equation (l), F(0) is just the in- 
tegral of f(t). Thus the shape of the spectral curve at the low frequencies 
is largely determined by the area under the f(t) curve. This is clearly il- 
lustrated in figure 4, where the psd curves for two pulse shapes are shown. 
The so-called N wave pulse has equal positive and negative area lobes, and 
its psd is approaching zero as w +o. In striking contrast, the triangular 
pulse, which has only one lobe, has a psd which is approaching its maximum 
at w = 0. The figure also illustrates other characteristics of simple pulse 
shapes. The N wave psd has its maximum at w/w near 0.7, where w is 
2~ times the reciprocal of the time duration of t!?e pulse. This is t&e of 
many shapes which have the symmetry property of the N wave and which have 
leading and trailing shocklets; such shapes have a maximum psd in the region 
of w/w = 0.65 - 0.75. If smoother signatures are considered by eliminating 
the leasing and trailing shocks, the w/w value of the psd maximum approaches 
1.0. If lopsided pulses which have nonzego integrals of f(t) are considered, 
the greater the lopsidedness the greater the value of S(O), and as the value 
of S(0) approaches and exceeds the existing maximum, the frequency of the 
maximum will approach zero. Concerning the dips in the psd of the N wave, 
these represent zeros of F(w). Such zeros occur under certain conditions of 
symmetry or certain conditions where the crossover point in the signature 
divides the T interval rationally. While there are any number of wave shapes 
which have cyclical zeros in the psd, these should be considered as special 
cases. Generally there will be oscillations in the psd, and these become less 
as the wave shapes become more lopsided. This behavior is illustrated by the 
triangular wave in the figure. As the final observation, one may note that 
the high frequency drop-off rate for each of the signatures shown in the figure 
appears to be equal. This is not a coincidence and is due to the fact that 
both signatures have discontinuities. The smoother the pulse shape, the faster 
the psd decays with increasing w. In general, if the kth derivative is 
discontinuous, F(w) behaves as l/Uk+l 
behaves as 11~~~'~. 

at infinity (ref. 69) and hence S(w) 
This is nicely illustrated in figure 5, where the psd 

for triangular pulses are shown for conditions of zero and finite rise times. 
With a zero rise time the function itself is discontinuous, whereas for the 
cases of finite rise time as shown in the figure, the first derivative is 
discontinuous. The decay rate for the two finite rise time waves are seen to 
become equal at the high frequencies, and the decay rate for these waves is 
faster than for the zero rise time, or shock type, signature. Ideally one could 
examine measured spectra and determine whether shocklets were present in the 
wave signatures by merely looking at the spectra decay rate, but in practice 
the very high frequencies are often questionable because of transducer resonances, 
instrument roll-off, and decrease in signal to noise ratio. 

The model test procedure will now be discussed. The procedure was to first 
select a basic wave shape with time duration T=T. Because one can expect 
a distribution of T's to be present due to variatigns in convection velocities 
and size of noise sources, eight families of wave shapes were used. They all 
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had the same shape and differed only in the value of T. The greatest average 
arrival rate was assumed to occur for T=T and the rate dropped to zero 
for 0.3 T > T 2 1.7 T . The assumed distrig;tion of relative average arrival 
rates vs.O r resemble2 a discretized sine curve (positive portion only, with 
a maximum at T and zero outside of the 0.3 To 
tion of this digtribution was rather arbitrary; 

to 1.7 To range). The selec- 
no experimentation with dif- 

ferent distributions has been attempted yet. A noise model in which the basic 
wave shapes are similar and only the time durations differ is a very convenient 
model. With this model the values of psd vs. w/w need be generated only 
once for the basic shape. Each point of the finalOpsd representing the com- 
bined family case is obtained by a weighted average of the point on the basic 
psd curve with points over a limited range to each side of it. The procedure 
essentially amounts to a smoothing of the original psd curve. Once a basic 
wave shape was selected and the above smoothing procedure applied, the resulting 
curve of psd vs. w/o was compared with the data of Kendall. In figure 1 
of reference 18 Kenday presented hot-wire spectral data obtained at a number 
of different tunnel Mach numbers. The data were presented in the form of a 
linear plot of power density on an arbitrary scale vs. nondimensional frequency. 
To make the present comparisons the data had to be read from the figure (a 
small one and accurate readings were difficult to obtain) and the nondimensional 
frequencies were converted to raw values. The data points for each Mach number 
were then overlaid on a log-log plot of the calculated model psd curve. The 
data plot was then shifted about to see if a match was possible. Shifting the 
plot vertically is permissible because absolute amplitudes have not been speci- 
fied in either the data or the calculated results. Shifting the plot horizon- 
tally is equivalent to changing the w of the data. Once a basic wave shape 
had been found which gave a good psd c%ve match with the data, the value of 
w could be determined (the value of w at the 
Kgowing w 

w/w, = 1 abscissa value). 
the value of the physical length of the "typical" wave shape x 

was detennyned from X = 2~r u /w , where u 
of the noise sources obtainedsfrgm the dataSof 

is the average convection velocity 
figure 2 and estimated values 

of %- There would be little lengthening of the individual wave signatures 
from the sources inasmuch as the distance from the walls would not be large in 
comparison with X. Thus x would correspond closely to the size of the 
typical wall body source, and the "test" of the model was in seeing if the 
A was reasonable in comparison with the thickness of the wall boundary layer 
6 at the acoustic origin of the signals reaching the centerline probe. The 
values of 6 had to be estimated, and the procedure for doing so,and the 
results,are given in Appendix B. 

From testing of simple candidate pulse shapes it became clear that symmet- 
rical shapes, such as the N wave, were not suitable. This is because their 
low frequency drop off rate is too great. Lopsided candidates, that is, those 
with nonzero If(t)dt were found appropriate. One of the first suitable can- 
didates found was the extended cosine-shaped pulse shown in figure 6. This figure 
compares Kendall's data (refs. 18, 68, see footnote p. 9) with the calculated 
spectrum using this particular pulse shape. It can be seen that the result matched 
the data fairly well with a signature wave length equal to 0.6 6 to 1.1 6. 
These values were deemed acceptable. While the pulse shape shown may seem 
rather unrealistic, until more information is available concerning typical pulse 
shapes and speeds, it can suffice. (Other successful shapes were found; some 
rather similar to the typical jet noise signature educed by Laufer, Schlinker, 
and Kaplan (ref. 56). This shape is rather triangular, and it is interesting 
to note that signatures from rockets with large exhaust plumes can exhibit 
triangular shapes - ref. 70). 

Laufer (ref. 57) obtained earlier hot-wire data in the free-stream of the 
JPL 20-inch tunnel. Power spectra for free-stream Mach numbers at 2.0 and 
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4.5 were presented on a log-log plot. The Mach 2 high-frequency drop off rate 
has a slope of -2, and this is consistent with the idea of a noise field with 
shocklets present in the wave signatures. The Mach 4.5 drop-off rate, how- 
ever, is greater than the Mach 2 rate. At the highest frequencies measured, 
approximately 115 kHz for M, = 4.5 and 80 kHz for M, = 2, the nondimensional 
Strouhal frequency, wB/u~, at Mach 4.5 is presently estimated to be about 
20% higher than the Mach 2 value. Thus one might expect that the upper frequen- 
cies for the Mach 4.5 case should be closer to showing asymptotic behavior. 
Some of the high Mach number data of Kendall also appears to show a drop-off 
rate which is greater than the low Mach number data. But even the computed 
power-spectrum curve shows some oscillation about the -2 slope and has not 
reached its asymptotic behavior, so the departure of data from a slope of -2 
may not be significant. Laufer's data were obtained at a higher unit Reynolds 
number than Kendall's. A comparison of the spectra obtained by aligning the 
peaks in Laufer's data with the peaks in figure 6 shows that Kendall's data 
have an earlier high-frequency roll off. One effect which would contribute to 
such behavior is that of the finite thickness of the shock fronts. 

The wall body model has thus been found to rather successfully model the 
shape of the psd data from Kendall (fig. 6). Whether the simple pulse shape 
found here would also work for other supersonic tunnels remains to be seen. 
If it does the procedure would be regarded as an engineering tool for estimating 
psd shapes in tunnels. There is some reason to believe, however, that the psd 
shape will not be a universal one. This would be due to the effects of finite 
shock thicknesses. Later in the report the subject of shock thickness will be 
discussed. The weaker the shock the thicker it is, and for the very weak shocks 
associated with the radiated noise, the shock thicknesses can be appreciable. 
For small to moderate size tunnels operating at low unit Reynolds numbers, the 
thickness of the shock fronts may form a sizable portion of the individual noise 
disturbance signal signatures. If this is indeed the case, then the spectrum from 
such tunnels, plotted on the w/w0 basis, should show earlier high-frequency drop- 
off than for larger tunnels, with large unit Reynolds numbers. And for a given 
tunnel, the shock thickness effect would be to cause earlier roll off at the lower 
unit Reynolds numbers. The low unit Reynolds number data of Kendall shown in figure 
6(a) do seem to show slightly less high-frequency energy than the high Reynolds 
number data. It is estimated later that for a wave strength of Aplp = 0.002, 
a small but rather arbitrary value, the ratio of shock front thickness to 
signal signature length would be about 0.11 for the low Reynolds number case, 
and 0.063 for the high Reynolds number test. If these conditions are at all 
realistic, then it is plausible that different high-frequency behavior should 
be noticeable. The shock thickness effect would not appear to be the cause 
of the aforementioned Mach 2 and 4.5 different high-frequency behavior observed 
by Laufer. It may, however, account for some of the high-frequency differences 
between Laufer's and Kendall's data. At M = 4.5, the ratio of the shock thickness 
to the signal signature wavelength of Laufer's data is estimated to be about 
0.02. This value is smaller than the above estimate for Kendall's data because 
of Laufer's higher unit Reynolds number. The shock thickness is also in- 
versely proportional to the stream unit Reynolds number. For the Mach 2 case 
thethickness ratio is 0.04, and this is to be compared to the value of 0.16 for 
Kendall's M = 2.4 case. Because of the higher unit Reynolds numbers, the 
acoustic shocks under Laufer's test conditions are more abrupt than those in 
Kendall's tests, and based on this factor the spectra in Kendall's test would 
be expected to show an earlier high frequency drop-off. The Mach 4 data of 
Donaldson and Wallace (ref. 5) cover a unit Reynolds number range which encom- 
passes that of Kendall's and show very little effect of unit Reynolds number 
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on the rate and location of the power spectrum high-frequency roll off. The 
decay rate is greater than Kendall's data show. No doubt many factors affect 
the high-frequency portion of the measured spectra. Instrumentation system 
response is probably one of the more important ones. A discussion of shock 
thicknesses will be presented later. 

As more is learned about the noise field, a more complex model may be 
needed and the simple model can be generalized as shown here. The equations 
given here would appear to provide a rational basis for a correlation of noise 
data from numerous supersonic tunnels. The mean-square value of the signal 
(actually the variance) varies directly with the average arrival rate of the 
sound pulses and this rate would in turn depend on the convection velocities 
of the sources, and hence upon M,, and on the number of sources present. 
The latter would depend upon how many sources were spaced around the tunnel 
and hence upon the ratio of the tunnel perimeter at the acoustic origin of 
the signals reaching a probe to some boundary layer thickness parameter (and 
thus on the length Reynolds number, Re and Moo). The number of sources 
would also depend upon the longitudina r spacing of the sources, and thus again 
on Re and M as well as the pressure gradient and heat transfer in the 
vicini y of themacoustic origins. *r The shape and amplitude of a typical pulse's 
f(t) would depend on the distance of the transducer from the wall (nondimen- 
sionalized by X and thus again possibly by some boundary layer thickness); 
the shapes would also probably vary with M, and Re . It is not surprising, 
therefore, that M,, Re , and test section perimeter &how up in the empirical 
noise correlation work Trefs. 71 to 73). 

The author has had some success in estimating the shape of psd curves using 
the following simple procedure which is based on figure 6. First, the value of 

is estimated and the following factors are then used: psd peaks 
; psd is down from the peak by a factor of !i at fk = 0.6 f 

rom the pzak by a factor of l/10 at 
0’ 

f1120 
=2fo,and f l/100 

=4f. f 
is g:&aob; 1i51hfo, and similarly, 

and this is approxi- 
mated by u /k 6wall. The proczdure"for estimating s is thus: (1) compute 
U by multaplying u, by a u /u, 
kS from the k-M 

value selected frgm figure 2; (2) select 
information gaven in figure 6(b); (3) determine 6 at the 

tunnel wall aco:stic origin by computing 6* using the procedure given in 
Appendix B (a procedure which can be reduced to evaluating a single mathematical 
expression) and multiplying by the conversion rates 6/6* (a formula for this 
ratio is also provided); and (4) evaluating f. = us/k&. 

If a detailed plot of the power spectrum is desired, the following expressions 
may be used. Letting z = W/W the mean-square value CJ of the filtered 
signal band-passed from w1 can be represented by 

rZ2 
CI 

z1-z2 
= Au0 

1 
g(z)dz 

Z, 

where g is the function describing the psd data of Kendall and A is the 
amplitude proportionality constant. An approximate representation of the 
function g is given by 
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1.02 
- 5.5610.15-z1 

g(z) = 
0.9687/z2 

~, 
Substituting and integrating gives 

0.03 ( z 5 0.7 

z > 0.7 

(5 = A w. [-2.752 (0.15-zl) 2.02 - sz 
z1-z2 

1 - 0.9687/z2 + 4.0611 

Letting z1 = 0.03 yields 

u 
.03-z2 

= A w. (3.8729 - 0.96871z2) 

and if z + w 
2 

u .03- = 3.8729 A w 
0 

If is were to be assumed valid as z + 0 (data is lacking for very low frequencies), 
then letting E represent a frequency just slightly greater than zero, the 
mean-square signal level from E to ~0 would be 

uEs = 4.00 A w 
0 

The integration is not extended to z=O because in this case the value of u2 
would have to be added to u ssOo, and there is no data available for n. 

Some time was spent trying to correlate the noise levels from various tunnels 
using some of the ideas contained in the present report. The success was mixed. 
It is likely that in the near future most noise prediction schemes will have 
mixed success because there appears to be some inconsistencies in the noise 
data. The most interesting of these involves three tunnels of the flexible- 
plate-type nozzle design. The three are, in order of increasing size, the 
AEDC-VKF tunnel D (30 cm X 30 cm, M = 1.5-5.0), the JPL 20-inch tunnel 
(51 cm x 48 cm, M = 1.6-5.6), and the AEDC-VKF tunnel A (102 cm X 102 cm, 
M = 1.5-6.0). In the AEDC facilities Donaldson and Wallace (ref. 5) have made 
Mach 4 hot-wire measurements in tunnel A (note of caution--this data is 
misplotted in Pate's widely cited reports, ref. 8) and Wallace has made similar 
measurements in tunnel D (presented by Pate in reference 9 along with the 
Donaldson and Wallace data). Laufer's JPL measurements (ref. 57) also include 
Mach 4 data. Over the same unit Reynolds number range the data from the JPL 
tunnel showed the highest noise level. Conventional wisdom states that for 
equal Mach number and unit Reynolds number the sound intensity should decrease 
as the tunnel size increases. The JPL data would be expected to fall between 
the two AEDC tunnel noise levels. The unusual pattern indicates that there 
may be something wrong with the data, or something unusual in one of the tunnels, 
or that the noise predicting concepts need reevaluation. 
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3. INTERACTION OF NOISE WITH LAMINAR BOUNDARY LAYER 

The noise field has herein been considered to consist of wave systems 
emanating from discrete downstream moving sources. Each individual wave 
system is further considered to include one or more weak shock waves or 
shocklets. The interaction between the noise field and the laminar boundary 
layer is therefore taken to consist of a series of weak shock wave boundary 
layer interactions. The shocklet-laminar boundary layer interaction is a 
feature which has not been discussed in the noise-transition literature, and 
it is the study of this interaction which will be emphasized in the remainder 
of this report. 

The two-dimensional interaction case will be highlighted in the following 
discussion. Such interactions are not necessarily considered to be the most 
important or the most prevalent, but they are the easiest to analyze. Strictly 
speaking, inasmuch as thenoise sources are not two-dimensional sources 
and the radiated shocklet systems are conical, there are no true two-dimensional 
interaction regions. The simplest interaction case to consider is that of 
a flat plate. The intersection of a cone with a plane is a hyperbola. But 
since the relative Mach numbers between the free-stream and the noise sources 
are often low, the shocklet cone angles are large and the intersecting hyper- 
bolas would have little curvature. The waves can thus be considered as locally 
planar and the apex region of each interaction as essentially two-dimensional. 
For sources which do not pass directly above the plate there would, of course, 
be no two-dimensional region. However, for interactions with bodies of revolu- 
tion, in contrast to the flat plate case, each impinging shocklet system will 
produce a two-dimensional interaction region. 

The most familiar condition for the shock wave boundary layer interaction 
is that in which the shock generator is stationary above a flat plate. By 
way of introduction, it is this stationary shock source case which is considered 
first. Later, when the noise laminar layer interaction is discussed, the 
shock system will be allowed to move downstream. 

Stationary Shock-Laminar Layer Interactions 

The problem of the interaction of stationary weak shock waves with boundary 
layers has not been considered a practical problem to investigate experimentally 
(the practical concern was with stronger shocks), but it has been examined 
theoretically. Much of this work was done around 1950 (refs. 74 to 76) and 
was usually restricted to the supersonic portion of the boundary layer. The 
work was abandoned because it was considered too simplified to describe ob- 
served shock wave interaction features for the cases of interest. The work is 
quite appropriate for the present purpose because the waves being considered 
are indeed weak and there is particular interest in how their strength varies 
in the outer region of the boundary layer. An allied field of research for 
this problem is sonic boom propagation. The sonic boom is an example of a 
weak shock propagating through a nonuniform medium, and a technique widely 
used in this research, namely geometric acoustics, was also applied to the 
present problem. 

Two-dimensional interactions. - The problem considered first is that of the 
refraction through the boundary layer of a weak plane shock from a stationary 
source. The boundary layer in the interaction zone can be considered as a 
medium in which the fluid properties vary only in the vertical direction. In 
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wave propagation problems, a medium in which properties vary in only one direc- 
tion, whether continuously or discontinuously, is often called a "stratified" 
or "layered" medium. The present problem is therefore the refraction of a 
weak plane shock through a horizontally stratified medium. The stratified 
medium presents a much simpler problem than the general nonuniform medium 
case, but the stratified problem is still difficult and one must often be 
satisfied with approximate solutions. 

One solution technique that is used to solve the stratified problem is 
to approximate the continuously varying medium properties using a layered model. 
Here it is assumed that the medium properties in each layer are constant and 
that discontinuities exist in the properties at the layer boundaries. The 
propagation problem is then solved by examining the series of reflections and 
transmissions that occur as the wave reaches each of the interfaces between 
the layers. One can let the thickness of the layers approach zero, and in 
the limit obtain a differential equation describing some aspect of the problem. 
This was the approach used in the early studies of the weak shock boundary 
layer interaction. 

In another solution technique the layered approximation is not used and 
from the outset the properties of the medium are allowed to vary continuously. 
But in this case, restrictions are imposed on the nature of the wave and prop- 
erty variations. The geometric acoustic method exemplifies this approach. 
In this technique, like geometric optics, waves are considered to propagate 
along ray paths, and ray tubes are used in the analysis. 

The analysis for the layered approach to the problem will be discussed 
first and is based largely on Barry's method of solution (ref. 74). The de- 
tails of the derivation are presented in Appendix C (which also contains anal- 
ysis and discussion of the reflected wave field). In the analysis the super- 
sonic shear layer is considered to be composed of a number of inviscid fluid 
layers which are separated by slip planes. Within each layer the fluid prop- 
erties are assumed to be uniform. At each slip plane the incident wave splits 
into a reflected and a transmitted wave. The situation is depicted in figure 
7. The change in Mach number across the weak waves is neglected. The heart 
of the analysis lies in the weak-wave assumption and the requirement that the 
static pressure and the flow deflection angle remain constant across a slip 
plane. Linearized theory is used and thus, provided the flow is not tran- 
sonic, the pressure change across a wave is given by 

where y is the ratio of specific heats, f3 is the flow deflection angle 
caused by the wave, and the plus or minus sign is used when the wave is com- 
pressive or expansive, respectively. The flow deflection angle for the refrac- 
ted wave is then obtained as 

l/4 

(3) 

where the subscript m refers to the conditions just outside the boundary layer. 
Substituting for 8 from equation (2) gives 
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(4) 

since the pressure is constant across the boundary layer. This equation is 
the principal result of the shocklet-boundary layer interaction analysis. The 
equation describes the wave strength as it propagates through the outer super- 
sonic region of the boundary layer. The equation shows that the wave strength 
increases without bound as the Mach number approaches one. For a number of 
reasons this predicted behavior is not valid. Equation (2), upon which the 
result is based, is not valid near Mach one. As the wave strength increases 
the small disturbance assumption is violated and the three-wave model itself 
breaks down when the incident wave becomes so strong that the downstream flow 
is subsonic and thus no reflected wave is possible. While the infinity result 
is meaningless, the equation does show that focusing can be expected near the 
sonic line. The behavior of equations (3) and (4) are sketched in figure 8. 

The wave strength can also be expressed in terms of the longitudinal 
velocity fluctuation using linearized theory. The result is 

(5) 

where a is the sound speed. 

It is easily shown from equation (4) that 
M = a. 

Ap reaches a minimum at 
Thus if M, > &, the wave strength will initially decrease as the 

wave enters the boundary layer. The minimum at M = fi can be associated 
with the fact that the nature of the reflected wave field changes from expan- 
sion to compression as M becomes less than the fi. Relations describing 
the reflected wave field are also derived and discussed in Appendix C. When 
M, > /2, the value of the Mach number at which the wave recovers its initial 
strength is given by 

Ma3 
MA~=A~m = /Mf _ 1 

As shown in Appendix C, using oblique shock theory this result can be gen- 
eralized to 

2 ML (y + y p-1 - pm (P, + 2) 
MAp=Apa =- 

Y M: - (Y + 9 P,) 

where P = AP/P . These equations are plotted in figure 9, and they show that 
as M, becomes ?arge the value of MAp=Ap comes close to one. Thus the wave 
can be focused above its initial value only over a range of local boundary layer 
Mach numbers which are close to one. This becomes especially so when the 
initial wave strength is weak. Thus for weak waves,the vertical space in the 
boundary layer in which amplification can occur becomes very small as the 
stream Mach number becomes large (and it does not have to get very large). 
Also indicated in the figure are the conditions where the flow downstream of 
the shock at the pressure recovery point is subsonic. 

Equations (3) or (4) have been derived by a number of researchers (refs. 
74 to 79) using different methods. Henderson (ref. 80) has also treated 
the shock wave-boundary layer problem as a refraction process using the 
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layered profile and polar diagrams of pressure ratio versus deflection angle. 
Again, only the supersonic portion of the boundary layer was investigated, 
but a much more detailed discussion of the possible shock systems existing 
near the sonic line was included. The refraction process was concluded to 
be regular down to the "triple" point where the flow behind the incident wave 
is subsonic. Below this point the refraction becomes irregular and a Mach 
stem was always found to be present. The Mach stem continues to penetrate 
the layer with increasing pressure rise across it until it bifurcates into a 
lambda foot. The lambda foot is a complicated shock system containing multiple 
bifurcations and the process continues down to the sonic line with vanishing 
strength. Henderson found that weaker waves penetrate the layer further 
before becoming irregular. The leading leg of the lambda foot must originate 
from disturbances propagating upstream through the subsonic portion of the 
boundary layer, and the pressure along the sonic line would have to be obtained 
from subsonic theory. In a later article Henderson (ref. 81) mentions the 
fact that in interactions both free precursor and post-cursor waves may be 
produced in the subsonic flow below the sonic line. These free precursor and 
post-cursor waves would propagate, respectively, upstream and downstream of 
the interaction region. It will be noted in a later section that shock refrac- 
tion experiments do reveal features rather similar to those described by 
Henderson. In this connection, numerical studies (refs. 82 and 83) of the 
sonic boom near the sonic line also show triple-point shock behavior as well 
as distortion of the sonic line upstream of the triple-point location. 

The geometric acoustic approach will now be discussed briefly. This is 
a new approach for the boundary layer interaction problem and the details are 
given in Appendix D. In geometric acoustics the signal is considered to 
propagate along rays. The concept of rays is probably a familiar one from 
studies of elementary optics. Classically the method of geometric optics 
represents a specialized solution to the wave equation. This solution is for 
the limiting case of the wavelength of the disturbance approaching zero (ref. 
84) (or the frequency approaching infinity). These restrictions are often 
stated in the manner that geometric optics is appropriate for the case in which 
the change in the properties of the medium over a wavelength are a small frac- 
tion of themselves. The similarities between light and sound propagation have 
long been recognized, and the criteria for the use of geometric methods are 
similar for both optic and acoustic propagation. Geometric methods are also 
appropriate for the propagation of discontinuous weak waves (ref. 85). 
Keller (ref. 86) has shown that weak shocks could be analyzed by the methods 
of geometric optics and stated that the theory of weak shocks could be called 
geometric acoustics. Friedlander (ref. 87) also developed the theory of geo- 
metric acoustics out of the need to describe the propagation of sound pulses, 
and, in fact, describes his book as an essay on the pulse solution of the 
wave equation. Thus geometric acoustics is eminently suited to the shocklet- 
boundary layer interaction problem. 

Ray tubes and energy considerations are most often used in the detennina- 
tion of wave amplitudes. The ray tube is essentially a bundle of adjacent 
rays, and is a differential area quantity similar to the stream tube of fluid 
dynamics. For a plane wave the total energy density is (Ap)2/pa2, where p 
and a are the local mean values of the fluid density and sound speed, respec- 
tively (ref. 84), and for a nonmoving medium the wave normal direction is in 
the ray direction. For a stationary atmosphere the energy flow rate is in- 
variant along a ray tube, and this quantity is equal to the energy density 
(Ap)2/pa2 times the volume flow rate aA,, where A, is the normal cross 
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sectional area of the ray tube. The invariant quantity is thus (A,P)~ An/pa. 
The wave strength therefore depends on the fluid density, sound speed, and 
ray tube area, and these quantities would vary in a nonuniform medium. For 
a moving nonuniform medium,such as the horizontally stratified boundary layer, 
the situation is more complicated. In this case the wave normals and the ray 
directions no longer coincide and the use of a single velocity will no longer 
suffice. Blokhinstev (ref. 38) showed that the phase velocity of the wave, 
which is the velocity of the wave in the direction normal to its wave front, 
is the sum of the local sound speed and the component of the medium velocity 
in the direction of the wave front normal. That is 

C =a+; 0:: n 
3 where n is the unit vector normal to the wave front. He further showed that 

the velocity of the energy flow (often referred to as the group velocity), or 
the ray velocity, is the vector sum of the local sound speed and the medium 
velocity. That is, 

+ 
The relationship between c and c is illustrated in figure 10. Blokhinstev 
found that the energy densify was (AP)~ c /pa3 and the volume flow rate 

z l x. Th e invariant energy flow rate waE, accordingly, 

UP> 2 

P a3 
cn G l A) = constant 

This result has since been derived in a number of other studies (see Appendix 
D for additional refs). Hayes (ref. 39) used equation (6) to study sonic 
boom propagation in a nonuniform atmosphere, and the present author found 
this work most helpful. Hayes refers to the expression in equation (6) as 
the Blokhinstev invariant. To apply the method to a propagation problem 
one other fact is needed to obtain the ray paths. For the case of a horizon- 
tally stratified medium, Rayleigh (ref. 88) gave a refraction law of the type 
of Snell's law as 

a set 4 + u = constant 

where, as in figure 10, I$ is the angle of inclination of the wave front normal 
to the horizontal. 

The shocklet-boundary layer solution is obtained by first attaching the 
coordinate system to the free-stream. In this case the free-stream becomes a uniform 
nonmoving medium, and the shock source becomes an object moving supersonically 
through the still atmosphere. The situation is depicted in figure 11. The 
problem is then very much like the sonic boom problem. The initial ray and 
wave normal angle conditions are identical, and 4 is simply related to the 
Mach angle corresponding to the relative Mach number of the source. The 
boundary layer becomes a very nonuniform moving medium into which the wave 
propagates. From equation (6) the desired pressure rise ratio is 

112 
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where the fact was used that c and 2 are collinear. The first fraction 
under the radical may be reduced to ala, by using the ideal gas law, assuming 
the static pressure is constant, and using the fact that a2 = yRT. Using the 
Snell's law, the second fraction can be written as cos @,/OX 4. Snell's law 
can be shown to yield the expected result that the wave is always inclined at 
the local Mach angle. Thus the previous ratio can be reduced to a ratio of 
Mach numbers. c is related to a, u, and $I through the law of cosines, 
and CJC involves only the Mach number and cos 4. Using the fact that the 
horizontal separation distance between two rays remains at its initial value, 
the ratio Am/A may be expressed in terms of the slopes of the ray path. In 
Appendix D the differential equation of the ray path is derived, and this 
provides the ray slope information needed to evaluate Am/A. When the final 
results are converted back to the usual tunnel-fixed coordinate system, equation 
(4) is obtained. The rays are horizontai at the relative sonic iine and the 
ray tube area vanishes. This fact provides the geometric acoustic explanation 
for why the computed pressure rise across the shock goes to infinity at the 
sonic line. The sonic line forms an envelope of all the locations where the 
ray tube areas vanish, and such an envelope is called a caustic. The problem 
of the pressure rise at a caustic is still a subject of research. According 
to geometric acoustics, signals do not propagate below the caustic or sonic 
line, but in reality disturbances do extend into the "shadow" zone. Such 
effects are considered in diffraction theories. 

As just mentioned, geometric acoustics predicts that the shocklet is 
totally reflected at the caustic and the theory says nothing about what happens 
below the caustic. The same was true in the layered model approach; the 
analysis was applicable only above the sonic line. That the shocklet may 
be considered to be essentially reflected from the sonic line is substantiated 
by experiment. Surface pressure measurements in shock wave-boundary layer 
interaction experiments show rather smooth variations along the surface. 
In sonic boom experiments, pressure traces below the caustic do not show 
shock-like signatures. But it is known that in wind-tunnel experiments the 
pressure at the surface downstream of a weak interaction does reach the value 
that would be expected with no boundary layer present. This cannot be explained 
by ray theory, but a reasonable explanation can be offered while remaining in 
the acoustics-refraction milieu. This will now be done by contrasting the 
sonic boom and wind tunnel experiments. 

There is an important difference between the sonic boom case and the 
usual flat plate shock wave-boundary layer experiment in which the shock is 
generated by some wedge-shaped body. The pressure wave from a supersonic 
aircraft typically has the shape of an N wave, and the wavelength of the 
disturbance is about the length of the aircraft. Most of the energy in the 
energy spectrum of an N wave is contained in wavelengths which are the 
order of the length of the N wave or less. These lengths are small in 
comparison with the large distances over which significant changes in the 
properties of the atmosphere occur. Thus geometric acoustics is not only 
applicable to the shocks in the pressure signature but it is appropriate for 
describing the bulk of the signature itself. One would therefore expect that 
most of the energy in the boom would be reflected at the caustic. The caustic, 
in a sense, acts like a low-pass filter, and in this case there is little 
energy to pass. The low-pass nature of the caustic is well known. Both 
theory and experiment show that below the caustic there is rapid attenuation 
in frequency and amplitude of the signal (refs. 89 to 9lj. 

In typical shock wave-boundary layer interaction experiments, the wedge 
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generates a shock signature which is essentially a step function. The energy 
in the step function varies as MA and thus the bulk of the energy is in 
the low-frequency realm. The wavelengths containing most of the energy are 
therefore very long in comparison to the thickness of the boundary layer (the 
nonuniform medium). This is just the opposite of the sonic boom case. Even 
though the sonic line filters the shock and its attendant high frequencies, 
the bulk of the signal in the step function would be passed, with the very 
longest wavelengths being affected very little. It may be noted that in studies 
of the interaction of sonic booms with very small scale atmospheric inhomo- 
geneities, the low frequencies are thought to pass relatively unchanged (e.g., 
ref. 92). Thus,from a refraction viewpoint, the surface pressure distribution 
would be expected to show a smooth variation, with the pressure level reaching 
that expected for the no boundary layer case. An allied and interesting 
but difficult experiment to conduct would be that of finding the effect of the 
shock body length on the surface pressure distribution beneath a laminar boundary 
layer. In this connection, an interesting basic problem to think about is 
that a compression shock, according to the usual fluid mechanics viewpoint, 
reflects from a free shear layer as an expansion system, yet geometric acoustics 
says that a shock should come from the sonic line. Thus, in contrast to the 
classical fluid mechanics view, does a shock exist in the wave reflected from 
a free shear layer? 

Reflected wave system. - In the layered Mach number approach to the inter- 
action problem, a reflected wave field was seen to exist along the entire shock 
front inside the layer. In the outer region of the boundary layer this reflec- 
ted field is weak, but it can have a cummulative affect. Some sample calcu- 
lations are presented in Appendix C (based on Marble, ref. 75) which show how 
the outer edge streamline is turned by the reflected field. In this interaction 
model the reflected shock observed in experiments is considered to be the 
result of the coalescence of the reflected compressive wave field originating 
near the sonic line. According to the model, the strength of the reflected 
wave is infinite inasmuch as the incident shock strength increases without 
bound. 

In the geometric acoustic approach the partially reflected wave field 
in the outer boundary layer region is not an evident feature of the analysis. 
In fact, for a nonmoving medium the energy is conserved in the geometric 
acoustics approximation and no partial reflection of energy along the way is 
predicted (see ref. 84, p. 313, and ref. 93, p. 89). In the moving medium 
case there is an exchange of energy between the flow and the waves (see ref. 
94, p. 325). The incident wave is reflected at the caustic and becomes 
singular in nature. The theory says that upon reflection there is a component- 
wise phase shift of ITI2 (ref. 95). For shock shapes this shift is consistent 
with a singular reflected wave. 

In Lighthill's interaction study, ref. 77, an incoming wave with a discontinuous 
increase in pressure or pressure gradient was found to reflect as a positive 
logarithmic infinity of these quantities. The logarithmic singularity in the 
reflected wave of a shock passing through a caustic has also been found in 
the linear sonic boom study of Fung & Seebass (see Appendix of ref. 90). 
As Lighthill mentions, it is perhaps realistic to expect that a shock step 
would be reflected from the sonic line as a pressure ridge (a rapid compression 
followed by a rapid expansion). 

Three-dimensional interactions. --- - It is quite likely that the three-dimen- 
sional interaction will be the most prevalent form of the noise-laminar layer 
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interaction. On a flat plate, for example, all sidewall sources will produce 
three-dimensional interactions. Even for sources passing directly overhead, 
the radiated shocklet systems will consist of oblique or swept waves except 
in the apex region of the interaction. Obviously,the three-dimensional inter- 
actions are more complicated than the two-dimensional ones, and for this same 
obvious reason the present author does not have much to say about them. 

For the case of a sonic boom propagating through a stationary atmosphere 
with a linear vertical sound speed gradient, Barger (ref. 96) has shown that 
the ray tube area can go to zero only on the ground track directly below the 
aircraft. If winds in the direction of the ground track are present, which 
is analogous to the two-dimensional boundary layer case (view the situation 
with the coordinate system attached to the free-stream), it would appear 
that the conclusion of Barger would still hold. Thus it can be inferred that 
in the shocklet-boundary layer interaction, caustic conditions can exist only 
directly below the shocklet source. It is not clear just how rapidly the 
maximum local focusing diminishes away from the "ground" track, but the focusing 
variation would no doubt depend on the Mach number and the distance of the 
shock source from the boundary layer. 

In the sonic boom case there apparently has been some concern over the 
focusing conditions at the cutoffs away from the ground track (lateral cutoffs - 
see refs. in 97; the term cutoff refers to the termination of the shock system). 
Ray-tracing computer programs using geometric acoustic methods predict that 
infinite-like shock focusing can occur (ref. 97). Measurements of sonic booms 
near lateral cutoff conditions have shown caustic-like pressure signatures but 
the intensities were found to be very low (ref. 97). Ray-tracing computer 
programs (ref. 39) could be applied to the boundary layer case to study the 
lateral cutoff conditions, but it is likely that such programs, which usually 
use four rays to define a parallelogram-type ray tube, would compute a zero 
minimum area as the lower two rays pass through their turning points and head 
back out into the free-stream. 

In oblique interactions the rays experience cross flow as they enter the 
boundary layer, and they thus tend to turn in the streamwise direction as they 
traverse through the boundary layer. One might initially think that the wave 
front normals would also tend to line up with the flow, but no such turning 
occurs. In a stratified medium, such as the flat plate case, the heading or 
azimuth of the wave normal in the planview remains constant along a ray 
(ref. 98). This means that, in the planview, the basic hyperbolic shape of 
the shock-boundary layer intersection does not change very much as the shock 
penetrates the layer. 

As a final observation it is noted that the rays in the oblique inter- 
actions enter the boundary layer less steeply than do those in the two-dimen- 
sional interaction case (those along the ground track). It might be expected 
that these shallow rays do not penetrate the boundary layer as much, and this 
is indeed true. In the flat plate case the rays become horizontal, or parallel 
to the plate, when the flow Mach number component in the direction of the 
rays initial azimuth (in the planview) is unity. Thus the greater the 
obliquity of the ray in the planview, the greater is the flow Mach number and 
y/6 at which the maximum penetration is reached (6 is boundary layer thick- 
ness). Since the greatest local focusing probably occurs at these turning 
points, the height of this focusing increases with increasing distance from 
the apex region of the shock-plate intersection hyperbola. 
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Examples of Focusing of Weak Shocks 

Most of the study within the last 15 years of the phenomenon of weak 
shock wave propagation has been done in connection with the sonic boom. 
Shock focusing investigations have been conducted both in the laboratory 
and in the field. In the laboratory, shock focusing has generally been 
studied by reflecting shocks from concave mirrors or by letting the shock 
refract through a nonuniform medium. The laboratory has the advantage of 
a well controlled environment, and shock shapes can be studied by optical 
means. Shocks from shock tubes, electrical sparks (they produce N waves), 
and supersonic projectiles have been used. There are problems associated 
with undesirable but important diffraction effects originating at the edges 
of mirrors, and there are pressure measurement resolution problems owing to 
the small scale of the shocks from the spark sources and projectiles. In 
the field studies the medium is the atmosphere and the shock wave source is 
usually a supersonic aircraft. In level flight, focusing and caustics can 
occur due to the sound speed gradient in the atmosphere; caustics can also be 
generated by aircraft turns and accelerations. Because of the greater length 
and time scales involved, detailed pressure signatures can be obtained. Of 
course no shadowgraph or Schlieren data are taken. The distinct disadvantage 
lies in the uncertainty of many of the important experimental parameters. It 
is also difficult to have enough pressure transducers at the right locations. 
A few results from some laboratory and field investigations will be presented 
here. The literature on laboratory and field investigations of sonic boom and 
underwater shock focusing is rather extensive. 

In a short survey article dealing with the sonic boom, Carlson (ref. 99) 
briefly mentioned a laboratory experiment of shock focusing by Barger. In 
this experiment shock focusing by thermal gradients was produced by firing a 
supersonic (Mm = 1.1) projectile through a heated chamber. No pressure data 
is given, but three Schlieren photographs are presented for the cases of strong, 
moderate, and no thermal gradients perpendicular to the flight path. For the 
strong gradient case, where the speed of sound near the center of the chamber 
equaled the projectile speed, the shock fronts (bow and tail shocks) are seen 
to become normal to the flight path and to lose their identity. It is interesting 
to note that no reflected waves appear to be visible. 

A somewhat similar experiment is briefly described in reference 100. 
The vertical sound speed gradient was produced by the mixing of air and CO . 
One schlieren photograph is shown along with a sketch illustrating its fea ures. z 
The leading shock was found to penetrate into the theoretical zone of silence, 
and no reflected shock is shown. The trailing shock exhibited a Y-shaped con- 
figuration near the caustic. The triple point was found to be the zone of 
maximum intensity. The authors state that the triple point is lower for the 
rear shock then for the front one; this statement is puzzling in view of the 
absence of a Y-shaped triple-point behavior in the front shock. A focus factor, 
defined as the ratio of the maximum Ap to that for the case of a homogeneous 
medium, of 1.7 was measured. 

The most thorough of the ballistic range experiments has been that of 
Sanai, Toong, and Pierce (ref. 101). 
speed gradient. 

An air-CO2 mixture produced the sound 
The Y-shaped triple-point configuration was found to exist, 

with the cusp portion extending to near the sonic cutoff region. A sketch of 
the situation is shown in figure 12. For very weak shocks the triple point 
was nearly coincident with the cutoff altitude, and as the input shock strengths 
were increased the triple point moved away from the cutoff height. The 
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greatest focusing occurred near the triple point where a focus factor of 1.7 
was found. 

The two most thorough field investigations of sonic boom focusing have 
been conducted by the French working group on sonic booms (ref. 100) and by a 
group headed by NASA Langley (refs. 90 and 97). Mostly ground level micro- 
phones were used by the French group (in one phase nearly 50 microphones 
were placed over a distance of about 5000 meters). For steady supersonic 
flight the rays at a caustic resulting from atmospheric refraction are nearly 
horizontal and hence this type of focusing is difficult to investigate with 
ground level instrumentation. This group thus concentrated on focusing resulting 
from aircraft maneuvers and low- and high-altitude linear accelerations. A 
maximum focus factor of 5 was measured for the acceleration and steady turn 
conditions and a factor of 9 was recorded for a turn-entry condition. The 
NASA group instrumented a 450-meter tower with microphones every 30 meters. 
For the steady flight case where the caustic occurred near mid-tower, both 
incident and reflected waves were detected by the microphones near the top of 
the tower. Near the caustic the signatures changed from the characteristic 
N wave shape to a U shaped configuration. Below the caustic the signature 
degenerated rapidly from the U shape into a signature containing no pronounced 
peaks (an auditory rumble was experienced rather than a boom; in an Appendix 
to ref. 97 Fung and Seebass presented computational estimates of the acoustic 
pressures below the caustic,and good agreement with the data was obtained near 
the caustic). A characteristic of the pressure signature near the cutoff con- 
dition was that pressure pulses (precursor waves) were frequently evident 
propagating ahead of the well-defined shock waves in the signature. A represen- 
tative caustic focus factor for the steady flight conditions was considered 
to be 1.8. Except in the immediate vicinity of the caustic, geometric acoustics 
was found to be adequate for describing the shock shapes. 

It is apparent from these experiments that the refraction process of a 
weak shock wave in a medium in which a sonic cutoff is present bears a rather 
strong resemblance to the process that was described earlier in the discussion 
of the weak shock-laminar boundary layer interaction. The triple-point con- 
figuration of Henderson's analysis (ref. 80) was found in the refraction experi- 
ments. The lambda foot bifuraction feature would be very difficult to detect 
in these experiments, but perhaps the precursor waves in the sonic boom field 
experiments are a manifestation of this process (Friedman & Chou (ref. 102) 
show how waves can get ahead of the shock near the cutoff; Myers and Friedman 
(ref. 103) also show that precursors can be expected). The shift of the N 
wave shape to the double-peaked U wave shape near the caustic shows shock 
shape behavior that is qualitatively in agreement with one of Lighthill's 
results of his boundary layer interaction analysis (ref. 77). Thus the 
present hypothesis that the laminar boundary layer focuses weak incoming shocks 
in the noise field appears to be reasonable. 

Noise-Laminar Layer Interaction 

The main point of the preceding discussions on shock behavior is that 
theoretical and experimental evidence leads one to believe that shocklets 
in the radiated tunnel noise field are focused within the laminar (and turbu- 
lent) boundary layers on wind tunnel test models. The emphasis in the paper 
will now shift to an exploration of this phenomenon. 

In proceeding from a discussion of the stationary shock-boundary layer 
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interaction to that of the noise-laminar layer interaction, essentially three 
new features have to be considered: (1) the sources of the noise field travel 
downstream; (2) the streamwise length of the individual pressure signature is 
finite; (3) the boundary layer is subjected to continuous strafing due to 
random arrival of the waves. The first item must be considered to determine 
at what height within the boundary layer focusing will occur. The second item 
removes the problem from the infinite duration step shock realm. The last 
item is important because the mean fluctuation levels increase as more dis- 
turbances arrive. 

Thickness of weak shocks. - A factor which has been considered,but not 
adequately discussed,is the thickness of the acoustic shocks. Actually, this 
element of the problem was overlooked until the investigation was nearly com- 
pleted. This oversight occurred because of the habit of thinking that shocks 
are very thin. They indeed may be considered thin for most applications, but 
the present application is an unusual one. Here very weak shocks are considered 
as they propagate through the tunnel free-stream and inside thin laminar 
boundary layers. As will be seen shortly, the thickness of a weak shock is 
inversely proportional to the shock strength and the stream unit Reynolds 
number, and hence the shock thicknesses presently considered are greater than 
the shock thicknesses one normally considers. It is therefore conceivable 
that the thickness of the acoustic strength shock could be comparable to the 
thickness of the laminar boundary layer through which it is propagating in the 
acoustic-laminar layer interaction. Indeed, as was indicated earlier in con- 
nection with the modeling of the free-stream disturbance spectra, under low 
Reynolds number conditions the shock thickness may possibly exceed 10% of the 
source tunnel wall turbulent boundary layer thickness. Under such conditions, 
as discussed earlier, it is quite likely that measured spectra could show an 
early high-frequency roll off because of the smoother signal signatures asso- 
ciated with thicker shock fronts. This may well be one of the physical mani- 
festations of finite thickness shock fronts, but an important issue to resolve 
in regard to the present work is to what extent does the discontinuous shock 
front approximation affect the appropriateness of the present analysis. The 
answer would appear as follows. (1) While the shocklet-boundary layer inter- 
action should now be envisioned with finite thickness shock fronts, the refrac- 
tion analysis is still valid because it is good for the high-frequency Fourier 
components of the signal regardless of the individual disturbance signature 
shapes, but the amount of focusing predicted assuming abrupt shock fronts 
should be considered an upper bound because shock fronts with finite thicknesses 
have less high-frequency energy to be focused. (2) The model of the pulse 
shapes used in the analysis of free-stream disturbance statistical properties 
should be altered to include finite thickness shock fronts. Before pursuing 
this any further, the matter of the shock thickness should be resolved. 
Appendix E contains the details of the derivation of the expressions for the 
thickness of a shock. 

Inasmuch as the fluid properties vary smoothly through a shock, the defi- 
nition of a shock thickness, like that of the boundary layer thickness, in- 
volves an arbitrary definition of the "edge" of the nonuniform region. The 
boundary layer edge is defined as the location where the velocity reaches some 
fraction f of the free-stream velocity, and likewise the shock thickness 
is defined as the distance over which the velocity change is a fraction f 
of the free-stream velocity. Letting A be the shock thickness based on f, 
it is shown in Appendix E (based on an analysis by Taylor and Maccoll, ref. 
104) that for weak shocks the shock thickness Reynolds number may be represented 
by 
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where M is the shock Mach number. This result is appropriate for oblique 
shocks i?? the shock Mach number normal to the wave is used. For air, y = 1.4, 
and the shock Mach number and strength are related by (ref. 105, eq. 93) 

M =q 
S 

where P=Ap/p, and hence the shock thickness Reynolds number may also be expressed as 

8~ 6P+7 ReA = 3 ~ 1+i 
6P ln l-f (8) 

For very weak shocks P i< 1 and the fraction (6P + 7)/6P may be replaced by 
7/6P and the shock thickness in air may be closely approximated by 

4.356 A=(, In E)/unit Re 

This equation is the basis for the earlier statements that for weak shocks 
the thickness is inversely proportional to the shock strength and the unit 
Reynolds number. 

The issue of the appropriateness of the refraction formulas will now be 
confronted. The refraction formulas are appropriate for high frequency signals 
or high frequency components of signals. To qualitatively assess the amount 
by which a theory based on the zero-thickness shock front might over predict 
the extent of focusing, one can comparatively examine the high frequency content 
of the zero- and finite-thickness shock front signals. As discussed earlier 
in the report, the zero-thickness shock signal has a spectrum with the slowest 
high frequency roll off. Shocks with finite thicknesses will have greater 
roll off and hence will have relatively less high-frequency energy which can 
be focused. The more abrupt the shock front the higher the frequency at which 
the ultimate roll off will begin. This is just a complicated way of stating 
the obvious fact that the more abrupt the wave front the more the signal will 
behave as a zero-thickness shock signal. A measure of the abruptness would 
be the ratio of the shock thickness to the signature wavelength, and in accor- 
dance with the idea that the signature wavelength is proportional to the radiating 
wall boundary layer thickness, the ratio may be represented by A/a where 

is the thickness of the boundary layer on the tunnel wall. 
%Ys ratio 

Thz smaller 

and the mo;e 
the more the signal behaves as a zero-thickness shocked signature 

appropriate the focusing predictions will be. 

To get an idea of the magnitude of this ratio, eq. (9) was used with 
P = 0.002. 6 typically varies from about 1 cm for small tunnels to 10 cm 
for large tun%ls. The unit Reynolds number range also varies considerably. 
A quick examination of refs. 106 and 7 to determine unit Reynolds number ranges 
for tunnels at NASA Langley and AEDC, respectively, shows that for tunnels 
in the Mach number range of 2 to 5 the Re 
typically fall in the 1.5 X lo4 to 4 x 10 Y 

olds number per centimeter values 
range. Thus for small tunnels 

IEwall = 1 cm), A/6 would vary from 0.9 to 0.03 and for large tunnels 
= 10 cm) the%atio would vary from 0.09 to 0.003. The conclusion from 

th!??ixercise is that for small and moderate tunnels operating at low unit 
Reynolds numbers the finite thickness of the shock front may occupy a signifi- 
cant portion of the individual disturbance signal signatures. In such cases 
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the focusing formulas may appreciably overestimate the maximum amount of 
focusing by the laminar boundary layer. Obviously, further study is needed 
to determine the quantitative effects of shock thickness on focusing. 

Earlier in the report shock thickness estimates were presented in con- 
nection with spectra measurements of Kendall (ref. 18) and Laufer (ref. 57). 
The particulars for these estimates will now be provided. Concerning Kendall's 
M = 4.5 results in figure 6(a), the two unit Reynolds number conditions were 
3.9 x lo4 and 7.2 x 104 per centimeter. For the M = 2.4 case in figure 6(b), 
the unit Reynolds number was 3.9 x 104/cm. As given in Appendix B, the 
respective wall boundary layer thickness estimates are 4.01, 3.66, and 3.03 
centimeters. The ratio of shock thickness to signature wavelength was com- 
puted from A/k& using eq. 
M = 2.4 (from fiE? 6). 

(9) with k = 0.78 for M = 4.5 and 0.67 for 
P was rather arbitrarily taken as 0.002 (P no doubt 

changes with M). The resulting ratios for the three conditions were, respec- 
tively, 0.11, 0.063, and 0.16. Laufer's spectra were given for Ree = 30000 

for M = 2 and M = 4.5. Interpolation in tables of JPL tunnel bounda@ 1 ayer 
thickness and flow condition data of Dayman (ref. 107) provided the following 
unit Reynolds number and boundary layer thickness estimates corresponding to 
Ree 2 30000: M = 2, Re/cm = 1.43 X 10 5, 6* = 0.68 cm (interpolating in Table 
1 of Dayman), and using 6/6* = 4.221 from Shapiro's textbook (ref. 108), 
6 = 2.88 cm; M = 4.5, Re/cm = 1.32 x 10 5, d* = 2.50 cm (using M = 4.54 results 
in Table B-l), 6/d* = 2.186, 6 = 5.46 cm. The values of k for M = 2 and 
4.5 were taken, respectively, <as 0.85 and 0.78. With P = 0.002, the resulting 
value of A/k6 were 0.037 for M = 2 and 0.024 for M = 4.5. These values 
are smaller th.% those for Kendall's conditions due to the larger unit Reynolds 
numbers in Laufer's tests. 

There is one other ratio of interest, and this is the ratio of the shock- 
let thickness to the flat plate laminar boundary layer thickness, A/&. The 
adiabatic laminar boundary layer thickness is given by 

where (5 depends on the free-stream Mach number and the value of 
Using equations (7), (8) and (lo), the desired ratio is simply 

f = (ulu,)y=6. 

A D/o -=- 
s&s-- 

X 

where, in terms of either shock Mach number or shock strength, 

D= S 

(11) 

(12) 
8~ 6P+7 l+f 
3 6P In l-f 

For f = 0.995, a common value used for boundary layers, Mack (ref. 109) has 
determined o for a number of free-stream Mach numbers for air, and a least- 
squares fit to his findings gives 

u = -0.02 Ma3 + 0.57 Mm2 - 0.31 M, + 6.12 
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Using equations (11) and (12) it is now a simple matter to determine the thick- 
ness ratio for a given free-stream Mach number and shock strength. Some 
representative results for f = 0.995 are displayed in figure 13. In the 
case of tunnel noise it is not clear just what values of M or P are 
appropriate, but the smaller values in the figure may be sustable. If so, 
then for laminar.boundary layers, where Re would typically be less than, 
say, 3 x 106, it is likely that the acousti?? shock thicknesses are of the order 
of the laminar boundary layer thickness in the noise-laminar layer interaction. 

General features. - This section is devoted to a description of some of 
the general features of the interaction between an individual noise-field 
pressure disturbance and the laminar boundary layer. Additional details of 
some of the features will be presented in a later section. The emphasis is 
on the two-dimensional interaction. In the first part of the discussion the 
interaction is viewed as an inviscid wave refraction problem in which a boundary 
layer response is precluded and the boundary layer does not add to the fluc- 
tuation levels. This point of view is appropriate for the very high frequency 
components of the noise field because in this case the wavelengths are so small 
that they cannot shake the relatively immense boundary layer. A conjectural 
description of the low frequency behavior of the pressure wave will also be 
offered based primarily on known results from the stationary shock interaction 
case. This is done so that when the full problem is considered a better ap- 
preciation can be had of the boundary layer contribution to the fluctuations. 
Mack (refs. 40 and 41) has calculated the forced response of the laminar 
boundary layer to an acoustic field, and he has shown that at the lower fre- 
quencies large fluctuations can be induced in the layer. This section will 
close with a brief review of his results. 

As a preliminary matter, the continuous arrival of the noise disturbances 
simply means that the average level of the fluctuations at a point in the 
flow increases in proportion to the average arrival rate of the disturbances 
(see the previous section DESCRIPTION OF NOISE MODEL). The disturbances are 
considered to arrive randomly in time, so there is no excitation of the bound- 
ary layer because of periodic arrivals. 

In the shock refraction problem it is the relative Mach number between 
the wave and the flow that is important. The relative Mach number is, in 
fact, the proper one to use in the wave strength equation (4). For a station- 
ary shock the relative Mach number and the flow Mach number are of course 
the same, but if the shock moves downstream, the relative Mach number is 
decreased. As a consequence of this, in a boundary layer interaction with 
a downstream moving shock the height of the caustic layer is raised. This 
is concretely illustrated in Figure 14, where a Mach number profile for a 
Mach 4 laminar boundary layer is shown along with a relative Mach number 
profile for the case of a shock moving downstream with a speed of 0.7 u,. 
The Mach number profile was obtained using the boundary layer program of 
Price and Harris, ir;fM llC&nd the relative Mach number is found in this 
case by M =M- . . 
tic layer zncreased 

The figure shows that the height of the caus- 
fro: 0.?8 6 to 0.92 6 as the shock speed changed from 

0 to 0.7 u,. The variation of the caustic height with convection speed of the 
shocklets in the noise field is a significant feature of the noise-laminar 
layer interaction. The heights of the caustic layers associated with the 
noise field will be discussed in greater detail in a later section. In general, 
these heights lie in the outer half of the boundary layer. 

As an individual pressure disturbance penetrates the laminar boundary 
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layer the strength of the shocklets in the wave signature will vary according 
to equation (4). Whether the nonshock portions of the pressure wave (the 
lower frequency components) tend to change in strength according to the 
equation depends upon how closely the geometric acoustic requirement is met 
that the acoustic wavelength must be small in comparison with the length / > 

1 J ! ' 
scale of the nonuniform medium. The latter length may be characterized by 
the thickness of the laminar boundary layer. The length of the incoming pres- 
sure signature can be characterized by the thickness of the nozzle turbulent 
boundary layer (most of the acoustic energy is contained in wavelengths which 
range from somewhat less than the signature length to longer than this length). 
The important ratio is therefore that of the tunnel wall boundary layer thick- 
ness to the laminar boundary layer thickness on the model, and as can be imagined, 
this ratio is certainly not less than one and in fact can be very large near 
the leading edge of the test model. Thus it appears likely that geometric 
acoustics will be appropriate only for the shocklets in the pressure wave, 
and as previously discussed, there may be conditions when it is not even ap- 
propriate for these owing to their finite thickness. This of course says 
nothing about the low-frequency behavior, but it will be assumed that the 
very low frequencies are not focused. At the caustic the pressure signature 
might therefore appear as it did in the free-stream with the exception of pres- 
sure spikes appearing at the shocklet locations as a result of the focusing. 
The shocklets would be reflected at the caustic as pressure spikes, and below 
the caustic the signature would be shock free. Incidently, it is not unusual 
for sonic boom signatures to show spikes, and these are attributed to small 
scale nonuniformities in the atmosphere (refs. 92 and 111). 

Below the caustic is an extended subsonic region. In this region, based 
on theoretical and experimental results for the stationary shock case, upstream 
spreading of the pressure wave would be expected (and downstream as well). 
In the theoretical analysis of upstream propagation of unsteady disturbances 
in the supersonic boundary layer, Schneider (ref. 112) has found that low- 
frequency large-wavelength disturbances with small phase velocities can prop- 
agate many boundary layer thicknesses upstream in the subsonic portion of the 
boundary layer. The damping coefficient was found to decrease with decreasing 
frequency. For a given frequency, the damping coefficient also diminished 
with decreasing Reynolds number. Some theoretical work (ref. 77) on the 
stationary interaction case shows that at a given interaction station the up- 
stream influence is greater for the lower unit Reynolds numbers (and thus for 
the thicker boundary layers). But a survey, done in connection with Appendix 
C, of some of the shock-boundary layer interactions experiments in which weak 
shocks were used shows that the data is not consistent on this point (upstream 
influence = 10 6). With the thicker subsonic regions in the downstream moving 
shock case, it seems reasonable to assume that the upstream influence of the 
interaction would be greater than for the stationary case. Dore (ref. 113) 
studied the problem of the interaction of a slowly moving shock with the bound- 
ary layer and found that the upstream influence was greater for a downstream 
moving shock than for a stationary one. The thickness of the subsonic region 
is a maximum when the relative Mach number just becomes -1 at the surface. 
This occurs for downstream speeds of 0.5 uo3 
thickness is about 0.7 6 for M 

for M, 1 4, and the corresponding 
> 4 (the thickness for the stationary case is 

0.4 6 for M, > 2.5). 
co- 

Below the caustic the wave form is thus considered to be distorted by the 
absence of shocklets and by the spreading of the wave. Whether the spreading 
significantly distorts the signal would depend on the extent of the upstream 
spreading in comparison with the wavelength of the pressure signature. 
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If the relative Mach number of the flow is supersonic near the wall 
(where the flow velocity will be reversed as indicated in fig. 14), downstream 
spreading (i.e., towards the aft end of the model) would cease. There would 
be a tendency toward wave coalescence into shocklets, but is unlikely that a 
shocklet could form before the disturbance reached the wall because of the 
short distance involved. The magnitudes of relative (reversed) supersonic 
Mach numbers at the wall are low. For example, the fastest moving shocklet 
in a Mach 16 tunnel has a relative Mach number at the wall of only -2.4. 

Whether the relative flow is subsonic or supersonic next to the wall, 
presumably at the surface there is pressure doubling for the bulk of the 
signature. As the signal propagates back toward the free-stream after the 
surface reflection, it would undergo the complicated processes similar to 
that which occurred on its incoming journey. If and when shocklet coalescence 
occurs, it would likely be in the free-stream inasmuch as the outer super- 
sonic layer is relatively thin. Disturbances which have spread upstream may 
also have generated very weak pressure waves which radiate into the free- 
stream. 

Summarizing, if the boundary layer behaves passively, the interaction 
process might be as follows. The shocklets in an incoming wave are focused 
at the caustic and the caustic signature is thus a spiked one. These spiked 
or pressure ridged portions of the signal are reflected at the caustic back 
into the free-stream. This is illustrated in figure 15, where the length 
scale of the disturbance has necessarily been greatly compressed. Below the 
caustic the signature is shockless and undergoes spreading. The spreading 
pressure field may generate weak signals which also propagate into the free- 
stream. The main rounded signature (the lower frequency components) reflects 
from the solid surface, with pressure doubling at the surface, and propagates 
back into the free-stream with possible additional spreading in the subsonic 
region. Shocklets may eventually reappear in this portion of the signature 
due to the nonlinear coalescence process, but this is likely to occur outside 
the boundary layer. The reflection and outward progression of the low-frequen- 
cy portion of the signal is not shown in figure 15. The incoming and outgoing 
signals would occupy much of the same physical space inside the laminar bound- 
ary layer and even in regions well outside of the layer. Transducers monitor- 
ing the noise field near'but outside of the laminar boundary layer, for example, 
would receive a mean-square signal contribution from the incoming and outgoing 
signals which, because of the spatial correlation, would not just be the sum 
of the squares of the two signals. 

One other item should be mentioned. The region behind the leading edge 
shock from a flat plate model is, in the geometric acoustic approximation, 
shielded from noise sources passing beneath the plate. In reality a diffrac- 
ted signal field should exist in the so-called shadow zone. The strength 
of this field may be weak (no one has made calculations), but it would be 
strongest near the leading edge of the model. 

To contrast with the passive boundary layer response viewpoint the re- 
sults of Mack (refs. 40 and 41) will be considered (the more complete results 
are in ref. 40). By a slight modification to his numerical compressible 
boundary layer stability code, (ref.109 ), Mack was able to calculate the 
forced response of the laminar boundary layer to an incoming acoustic field. 
His numerical results should thus reflect the refraction-diffraction aspects 
of the problem (not the above mentioned leading edge diffraction problem) 
as well as the reaction of the boundary layer. For this purpose, Mack modeled 
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the noise field as disturbances coming from a downstream moving sinusoidal 
wavy wall. The speed of the wall was taken to be slow enough so that the 
stream flow was supersonic with respect to the wavy wall. In this situation 
the disturbances propagate away from the wall along the Mach lines in the 
downstream direction. At any given distance from the wavy wall the pressure 
pattern is a sinusoidal one, and this signal is taken to represent one 
Fourier component of the noise field. Mack studied the interaction of this 
incoming moving pressure field with a parallel flow flat plate laminar bound- 
ary layer. 

This form of the incoming noise field was quite suited to the modifica- 
tion of the method of solution Mack used in his stability calculations. In 
the stability problem analytic solutions of the linear stability equations 
in the free-stream provided initial conditions for the numerical integration 
from the edge of the boundary layer to the wall. Two of the independent ana- 
lytic solutions resembled incoming and outgoing sinusoidal acoustic waves, 
and in the stability calculations, the incoming solution was rejected. For 
the forced response of the boundary layer it was necessary only to incorporate 
the incoming acoustic wave solution. The addition of a solution which matched 
a wavy-wall acoustic boundary condition eliminated the eigenvalue nature of 
the problem, and what was being calculated for a given wavy-wall wave number 
and wave speed was the steady state forced response of the laminar boundary 
layer to the sound field. Mack actually has two computer programs; one for 
the viscous theory and one for the inviscid theory in which viscosity is ne- 
glected while retaining the laminar boundary layer profile (a simpler system 
of equations to solve). Forced responses were generally computed using both 
programs, and of course for the viscous program, a Reynolds number condition 
for the laminar boundary layer needed to be specified. 

With regard to the relevancy of the steady-state type calculations to 
the pulse-shaped randomly arriving waves which have been emphasized in the 
present report the following comment can be made. As discussed earlier in 
the report, for randomly arriving wave pulses only the signature for a single 
pulse need be considered. The Fourier components of a single pulse have 
infinite time durations (the components cancel each other except where the 
pulse occurs),and Mack's wavy wall can be considered to represent such a 
component. Mack presents all of his results in the form of the ratio of the 
nns value of the computed quantity to that of the input level at the edge 
of the boundary layer, and by doing so he is essentially mapping out what would 
be called the transfer function for the boundary layer. 

To be particularly applicable to the experimental work of Kendall (refs. 
17 and 18), most of Mack's calculations were done for a free-stream Mach 
number of 4.5 and a wave speed of 0.65 u, (some limited results were obtained 
at M, = 5.8 and 7.0). The frequencies chosen for investigation were in the 
range where Kendall found most of the acoustic energy. In terms of the ratio 
of the wavelength to laminar boundary layer thickness, X/6, one finds that 
these values ranged from about 10 to 350. Relatively speaking, the compu- 
tations thus illustrate the response of the boundary layer to low-frequency 
acoustic excitation. 

Inasmuch as the hot-wire anemometer in the experiments was sensitive 
primarily to mass-flow fluctuations, Mack's results, with one exception, are 
in terms of ratios of this quan,tity, although results for a large variety of 
flow variables were computed. For any combination of Reynolds number, wave 
speed, and frequency, the fluctuation level was found to peak within the 
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boundary layer. Only one disturbance profile has been published (ref.114 , 
also shown in ref. 58) and the fluctuations peaked where the relative Mach 
number was one (which was indicated to be near 0.8 a). The significance of 
this was not clear because at a lower Reynolds number the height of the peak 
increased by 20 percent. 

For all conditions tested the ratio of the peak rms mass-flow fluctuation 
level to the incoming rms level, m /m. 
leading edge, and to reach a maxim m Value whose 8 

was found to grow starting at the 
x distance and magnitude 

were inversely proportional to the frequency, and then to decrease slowly 
(fig. 9, ref. 40; also in ref. 58). From the passive boundary layer behavior 
viewpoint one expects less interesting things to happen as lower frequencies 
are examined. The trend found by Mack of greater peak fluctuations with 
decrease in frequency clearly shows that the boundary layer is reacting to 
the acoustic field. The maxima of the m /m. were in the range of 10 to 
17. (Incidentally, there does not appearPto'be a correlation between the mag- 
nitude of m lm. and the nearness of wave number, wave speed, and Reynolds 
number condi?io& to an eigencondition of stability theory.) One wonders 
whether calculations at higher frequencies would show the trend of decreasing 
m lm. with increase in frequency to reverse itself as geometric acoustic 
cgndftions are approached. Similarly, for a given frequency, would the slow 
decay downstream of the peak change to growth as small h/6 values were reached? 

For a single frequency, some results showing the effect of wave speed 
were obtained (ref. 40). At lower Reynolds numbers the boundary layer response 
increased monotonically with increasing wave speed. At higher Re values 
the maximum response occurred for a wave speed of 0.65 urn. Viscous results 
were not obtained for wave speeds below 0.4 uco, but the results appeared to 
show that the response would continue to decrease for slower speeds. 

Some limited results on wave obliqueness (ref. 40) showed that there was 
little change with obliquity until the wave angle approached the condition 
where the relative Mach number was one. Near this condition the boundary layer 
response decreased abruptly. 

Ratios of the rms value of the fluctuating pressure at the wall to that 
of the incident wave at the edge of the boundary layer were obtained for two- 
dimensional waves traveling at 0.65 uo3 (M, = 4.5). At any Rex there was 
a pressure doubling at the wall for the very lowest frequencies, and at the 
higher frequencies, the surface pressures dropped with increasing frequency. 
It appears that the surface pressures are less than the free-stream pressures 
for X < 106. 

The final results to be mentioned are the ratios of the rms reflected-to- 
incident amplitude levels at the edge of the boundary layer (two-dimensional, 
M, = 4.5, wave speed = 0.65 uo3), (ref. 40). For any given Rex, this ratio 
approached one as the frequency approached zero. For increasing frequencies, 
the ratio would drop to some minimum, climb to a value greater than one, and 
then asymptotically return to the value of one. The inviscid result showed 
that the reflected to incident energy was greater than one for 0 < w < ~0. 
The acoustic interaction apparently can set up conditions which allow the 
boundary layer to locally extract energy from the free-stream. For a given 
frequency, the Reynolds number condition at which the greatest energy is 
absorbed does not coincide with the Reynolds number condition for which 
m lm. is a maximum. 
vpalue' of 

Roughly speaking, for a given frequency the maximum 
mp hi occurs at the Reynolds number condition where the boundary 
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layer just begins to radiate more energy than it receives. 

In summary, using sophisticated techniques Mack has illustrated the be- 
havior of the laminar boundary layer to low-frequency acoustic excitation. 
The results show that the interaction is a complex one and that viscous ef- 
fects are quite important. Even in the inviscid case the boundary layer 
may be considered to interact actively in all but the extreme cases at very 
low and very high frequency acoustic fields. Whether the computations could 
be extended to the very high frequencies to recover geometric acoustic be- 
havior is not clear, but for now Mack's findings and the present ones con- 
cerning the shocklet behavior may be considered complementary. Mack has 
shown that very large low-frequency fluctuations can occur in the outer region 
of the boundary layer (and in at least one case at the caustic layer height), 
but unfortunately little information has been given concerning the heights 
of the peak fluctuation levels. There is much experimental data available 
for comparison purposes on the heights of the peak fluctuation levels. 

Height of caustic region. - The caustic layer is the region within the 
boundary layer where the fluid velocity is sonic relative to the incoming 
noise shocklet. With u representing the shocklet downstream source veloc- 
ity, this relation may bg expressed as 

u-u =a 
S 

(13) 

where a is the local sound speed. Where this condition occurs obviously 
depends on the laminar layer profile and the shock velocity. To use the Mach 
number and velocity profile results obtained from the computer program of 
Price and Harris (ref. IlO), it is more convenient to write equation (13) 
in terms of u/u and M. Letting n = u /uco, 

S 
the equation can be written 

as 

U -= rlM 

u, M-l 

For a given Mco and n, one can use the computed boundary layer profile in- 
formation and, by trial-and-error, determine the value of y/6 for which 
equation (14) is satisfied. This has been done for shocklet speeds from 0 
to 0.9 u 
results &e 

over a free-stream Mach number range from 2 to 12, and the 
shown in figure 16. For M, 1 5 the caustic layer heights are 

remarkedly insensitive to M, and they increase nearly linearly with the 
shock speed ratio u /Urn. Also shown in the figure are some Mach 6 and Mach 
8 cooled boundary la$er results (T /T = 4). The effect of cooling is to 
depress the caustic heights. Thiswef?ect is most pronounced near the wall. 

The next desirable step would be to indicate at what height the noise 
field caustic region would likely lie for a given tunnel Mach number. Inas- 
much as figure 16 shows that the caustic layer height depends directly on 
the shock speed ratio, the problematical issue of the convection speeds of 
the noise field must be faced. While the source of the radiated field is 
the turbulent boundary layer on the nozzle wall, there have been no experi- 
mental efforts to determine what flow structures are providing the radiation. 
There have been subsonic experiments in which cross-correlation measurements 
were taken with a wire in the boundary layer and a surface pressure trans- 
ducer beneath the layer, and there have been correlations obtained with two 
wires in the boundary layer. The most extensive set of cross-correlation and 
convection velocity measurements has been of the surface pressure fluctuations. 
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Broadband subsonic and supersonic surface pressure convection velocity re- 
sults have been compiled and are shown in figure 17, and the data show, 
with a couple of exceptions, that the measured convection speed varies with the 
pressure transducer strsamwise separation distance Ax. For the smallest 
separations (Ax = 0.5 B , where 6* is the boundary layer displacement 
thickness) the broadband convection velocities are around 0.55 u, to 0.60 
u,, and as the separation is increased, the measured convection velocity 
increases and reaches a value of about 0.8 u, for 
10 6*. 

Ax greater than, say, 
It may be noted that in visual studies of the low speed turbulent 

boundary layer, transverse eddies have often been observed in the outer region. 
These large eddies give the boundary layer edge its corrugated appearance, 
and the speeds of the centers of these eddies are in the 0.8 - 0.9 u, range. 
The variation in measured convection velocity with transducer separation 
distance is generally explained in terms of the coherency of the large eddies. 
At large separation distances only the large eddies retain coherency; hence 
at these distances the correlation results reflect the faster speeds of 
these outer eddies. Using a novel optical technique to detect surface pres- 
sures, Emmerling and co-workers (ref. 127) have found large pressure patterns 
(length - 6, span > 6) which travel with speeds up to 0.9 u, as well as 
small but intense patterns (scale - 0.1 6) with convection velocities down 
to 0.2 u . The turbulent boundary layer can thus supply a wide range of 
speeds f& potential noise radiation sources. As seen in figure 16, caustic 
layer heights for speeds of 0.2 uo3 and greater lie in the outer half of the 
boundary layer. 

The trend of increase in surface pressure convection velocity with in- 
crease in transducer separation distance is found in both low and high speed 
boundary layers. The particular variation pattern, however, may be a little 
different for the radiated pressures at the higher Mach numbers. At M, = 4.5, 
Kendall (ref. 17) made cross-correlation measurements in the free-stream 
with two hot-wires at various separation distances. The present author has 
estimated that the nondimensional separation distancz in these measurements, 
AX/~*, varied over the range of 1.5 to 7.7, where 6 is the estimated dis- 
placement thickness of the nozzle*boundary layer at the acoustic origin of 
the signals reaching the wires (6 = 1.64 cm, as estimated in Appendix B). 
Dividing the separation distances by the time delays of the correlation 
peaks, little variation of us/u, with separation distance was found, with 
U = 0.7 u,. Based on the surface pressure data one would expect*to find a 
vzriation in the measured convection speed for the range of Ax/6 values 
covered. In the same tunnel and at the same Mach number, Laufer (ref. 57) 
had earlier found a convection velocity of 0.53 u, by applying the distance- 
time division technique to a wide-band cross-correlation curve. Laufer's 
wires, however, had a separation distance of about l/4 that of the smallest 
value used by Kendall. Thus the trend of decrease in measured convection 
speed with decreasing transducer separation distance also appears to exist 
for the radiated pressure*field; however, at this Mach number the relative 
separation distance, Ax/6 , apparently must be quite small before the decrease 
occurs. Using the single-wire technique Laufer (ref. 2) had previously meas- 
ured convection velocities in the range of 0.42 u, to 0.45 u,. This result 
may be viewed as being consistent with the later findings in that a lower 
limit was found as Ax + 0. Even with these apparently consistent results, 
the question persists as to their meaning or interpretation. The dual-wire 
technique discriminates against signals which decrease in coherency between 
the wires. As the wires approach each other the discrimination factor becomes 
less important because losses in the coherency decrease. For wires which are 
very close together, it is experimentally difficult to obtain accurate dis- 
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persion results; in the limit of just one wire this capability is lost al- 
together. The one-wire result represents some sort of weighted average 
of what is happening at a point, and the measured convection speed could, 
for example, reflect the influence of a few strong signals or perhaps the 
influence of many weak ones. 

Intuition is not infallible when trying to associate frequencies with 
scales and speeds of disturbances. Consider, for example, the case of 
signals from two similar families of shocklet-radiating flow structures 
which have the same average arrival rate at any point (i.e., each family 
has, on the average, the same number of flow structures passing a point per 
unit of time). If one family travels slightly faster than the other, its 
power spectrum will be shifted to higher frequencies and the high end of 
the combined spectrum would be dominated by the faster family. But if the 
fast family is too fast, contrary to intuition, the slow family can dominate 
the upper end of the spectrum. This can happen because the average signal 
level decreases as the speed increases due to the shorter individual pulse 
time durations. Thus, while the power spectrum shifts to the right by an 
amount proportional to the time duration of the pulses, the spectrum level also 
drops by an amount inversely proportional to the pulse duration squared, and if the 
speed is too great its spectrum level can drop below that of the slow family, 
even at the high-frequency end. As a second example, consider the case of 
flow with two families of turbulence structures present, each having the same 
average arrival rate, with one having long structures and the other short 
ones (both of the same amplitude). Recall that earlier it was shown that the 
behavior at the low-frequency end of the spectrum depends upon ff(t)dt, 
where f(t) is the typical individual eddy signature and the integration is 
over the length of the signature. If the longer structures have disturbances 
such that the integral is nearly zero, then the power spectrum approaches zero 
as the frequency goes to zero. If the Sf(t)dt for the shorter family is 
nonzero, then this latter family would dominate the spectrum at the low fre- 
quencies. Thus the low frequency portion of the spectrum depends on the 
shapes of eddy structures and not just on their sizes. In these examples, 
dispersion measurement results could be altered if one family has a much 
greater average arrival rate than the other or if one family has much greater 
signal amplitudes. 

In the real flow case there seems to be some evidence that the dispersion 
in the radiated noise field decreases with increase in Mach number. Laufer 
commented in reference 48 (p. 57) that the weak maximum in the cross-correlation 
curves at the lower Mach numbers suggested that the convection occurs over a 
wide range of velocities. It was mentioned earlier that Owen et al. (ref. 
7) did not find dispersion in two Mach 7-8 tunnels. This possible trend is 
somewhat vexing because at the higher Mach numbers there is a greater speed 
range over which Mach wave radiation can occur. Perhaps the concentration 
of speeds with increase in Mach number, if this in fact happens, is the result 
of the very low densities near the wall. Perhaps the inner structures can- 
not radiate as effectively as the larger and faster outer structures which 
lie in a much greater density flow. The very high convection speed of 0.95 
u, found in a Mach 20 helium tunnel is probably near to the speed of the 
outer layer structures, but no dispersion measurements were made (the single 
wire result of ref. 3 was confirmed later with the dual-wire technique 
(ref. 128)). Incidently, concerning the dispersion in the surface pressure 
fluctuations beneath a turbulent boundary layer, there do not appear to be 
consistent findings. In both subsonic and moderate supersonic experiments 
one can find cases where the convection velocity increases with decreasing 
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frequency (refs. 124 to 126, 129 to 132j and other cases where this trend is 
abruptly terminated by a low-frequency region where the speeds rapidly diminish 
(refs. 133 to 137). 

Returning now to the question of what convection velocity ratios should 
be used to locate the caustic region heights of the tunnel noise field, the 
answer seems to be that at any given Mach number no single speed is sufficient. 
It may well be that at the higher Mach numbers a smaller range of speeds 
would be appropriate, but this remains to be concretely demonstrated. But 
just to show a possible trend of caustic region height with tunnel Mach num- 
ber, the speeds corresponding to the bounds of the data shown in figure 2 
were selected (a straight line parallelogram-shaped boundary was used) and 
the result is shown in figure 18. This figure is misleading because the 
small scatter in the Mach 2 and Mach 8 data makes it appear as though there 
is greater certainty in the corresponding caustic region heights. This problem 
is especially noticeable at M a, = 2 where Laufer indicated that a variety of 
speeds appeared to be present. To remedy the situation, dashed lines have 
been added joining the caustic layer heights for u /u = 0.2 and u /u = 1 
- l/Moo (fastest possible for Mach wave radiation) zt M" = 2 with the" c&ners 
of the parallelogram in the figure. The tolerance bandmat M = 4.5 encom- 
passes the dispersion found by Kendall. If the dispersion dges decrease with 
increasing M, and the primary noise sources become the outer layer eddy struc- 
tures, then the main feature of the height of the noise field caustic region 
would be the increase in the height of the lower bound with increasing tunnel 
Mach number. 

Estimate of focusing strenpths. - The linear theory predicts that the 
pressure rise across an incoming shocklet becomes infinite at the caustic. 
A more realistic estimate of the maximum amount of focusing is obviously 
desirable. The previously discussed sonic boom experiments showed that focus 
factors at a caustic produced by refraction in those cases were actually not 
very great. Results from sonic boom theory and experiment were used in the 
present effort to estimate typical focus factors for the shocklet-laminar 
boundary layer interaction and this procedure will be discussed below. But 
first it is of interest to consider some simple results using oblique shock 
theory. In all of the work in the present section it is assumed that shocks 
of essentially zero thickness are entering the shock refraction region. It 
should be kept in mind that very weak shocks with their finite thickness would 
not be subject to the same degree of focusing. 

The relation between the local Mach number M* and the shock strength for 
which subsonic flow exists downstream may be derived from oblique shock theory 
and is 

M* = j- 

where, again, P=Ap/p. 

Simultaneous solution of this equation with the shock refraction equation (4), 
written as 

provides the means of determining the values of P and Mach number where the 
three-wave model breaks down and the irregular Mach stem refraction begins. 
This has been done for a number of free-stream Mach numbers and initial wave 
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strengths, and the results are shown in figure 19. The figure clearly shows 
that the weaker t&e initial wave strength Ap,/p, and the further the free-stream Mach 
number is from /2, the closer the value of M* comes to one. The figure 
also shows the amount of focusing which occurs at the point where the refrac- 
tion ceases to be regular. The weaker the initial strength and the closer 
the free-stream Mach number is to &, the greater is the degree of focusing. 
The greatest amount of focusing shown in the figure is Ap*/App, = 2.7 
(for ApJp, = 0.001). Values obtained by this method should be considered as 
lower bounds, for it is likely that some additional focusing will occur. But 
if the results from previously discussed shock focusing experiments as well 
as the results to be given below are a valid guide, then these lower-bound 
values are within a factor of, say, three of the maximum amount of focusing. 

In sonic boom theory, scaling laws have been developed to describe the 
strength of the boom in the vicinity of a caustic. The scaling law may be 
written in the form (ref. 82) 

C l/5 
P max - = Constant X d/r 

C 
P (y+l) cp > 

ref ref 
(15) 

where C is the pressure coefficient and the reference location is some point 
away frog the caustic; d is the distance of the reference location to the 
caustic line, and r is the radius of curvature of the shock ray path at the 
caustic. The constant must come from an analytic or numerical solution to 
the full nonlinear problem or from experiment. From approximate calculations 
Gill & Seebass (ref. 82) obtained a value of 2.8 for the constant (in later 
calculations it appears that a greater C 

P lCP 
was found, see figure 

max ref 
10 of reference 83, but no estimate of the scaling law constant was given). 
Other versions of the scaling law exist. Sanai, Toong, and Pierce (ref. 101) 
used a law of the form 

AP IP l/5 
max 

AP ref" 
= Constant X 

and from their ballistic range experiments found their constant to be 1.3. 
They also examined some of the data of the NASA sonic boom tower experiments 
and estimated the constant to again be 1.3. There is enough information given 
in the ballistic range experiment to apply equation (15) and evaluate its 
constant, and when this is done a value of 2.01 is found (d = 1.29 cm, 
r = 14.14 cm, Apref/p = 4.5 x 10m2, Mref = 1.09, M Ap max = 1.04). The 2.01 

value is about 30 percent less than the 2.8 value of Gill & Seebass. To 
estimate the focusing strength in the laminar boundary layer the value of 
the constant was taken as 2.8 and used in equation (15). It should be noted 
that the scaling laws show that the weaker waves are focused more, that is, 
they have higher focus factors. This behavior is similar to that of the 
lower bounds established earlier. 

To use equation (15) three tasks had to be completed: the boundary layer 
profile specified, the value of r determined, and the value of C obtained. 

P ref 
The calculations were limited to two tunnel Mach number conditions: M, = 4 
and 8. These limited results were thought to be sufficient to indicate the 
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magnitudes of the focus factors which may be expected in the boundary layer. 
The velocity and temperature profiles were approximated rather crudely. The 
T/T, temperature profiles shown in Van Driest (ref. 138) were roughly ap- 
proximated using cubic polynomials. The U/U~ velocity profiles were ap- 
proximated by straight lines in the linear region, and these were tangen- 
tially joined by a circular arc which completed the profile to the outer 
edge. Specific information about these simulated profiles is given in 
Appendix F (wherein it is revealed that the Mach 8 temperature profile used 
is a very poor one). 

Some of the details of the tasks of determining r and selecting the 
reference location are given below. The reader primarily interested in the 
results is invited to examine figure 20 and to skip to the last paragraph of 
this section. Complete details concerning the determination of the radius 
of curvature at the caustic are provided in Appendix F. 

Letting n be the ratio of shocklet source convection velocity to free- 
stream velocity, it is shown in Appendix D that the differential equation of 
the ray path is 

(16) 

Using this equation, the radius of curvature of the shock ray path of the 
caustic was obtained by two methods. Both methods utilize the well known for- 
mula from calculus for the radius of curvature of a plane curve. Inasmuch as 
the slope of the ray path is zero at the caustic, the radius of curvature 
formula reduces to simply the reciprocal of d2y/dx2 evaluated at the caustic. 
With Y = y/6 X = x/6, the radius at the caustic becomes 

r 1 -= - 
6 d2 Y 

d X2 c 

where the c refers to caustic conditions. Since dy/dx = dY/dX, the first 
method involved differentiating equation (16), evaluating the result at the 
caustic, and then taking its reciprocal. From equation (16) one finds that 
the caustic is located where 

(; - r1)2 Mm2 = $ 

co CXJ 

Since T/Tco was approximated by a cubic polynomial, the caustic was located 
by the solution of a cubic polynomial in the region where the velocity pro- 
file was linear. In the outer region of the boundary layer the location would 
be obtained by a solution of a sixth degree polynomial. This solution could 
be obtained numerically, but motivated by this additional complexity and by 
the possibility that in many cases only tabulated profile data would be avail- 
able, another approach to obtaining the radius was followed. In this approach 
the ray path differential equation (16) was integrated numerically from the 
edge of the boundary layer to the vicinity of the caustic. (Some plots of 
ray paths and deviation of the ray path angle from the wave normal angle are 
shown in Appendix F). The radius of curvature was then found by the following 
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simple device. A parabola with vertical axis was least-squares fitted through 
some of the final points (a collocating parabola worked well also), and the 
vertex of the parabola was deemed the caustic location. The radius of cur- 
vature of the parabola at its vertex is simply the reciprocal of twice the 
coefficient of the squared term. Results from this approximate method were 
in excellent agreement with those obtained from the first method. 

The radius of curvature results are presented in figure 20. The figure 
illustrates that there is little difference between the two Mach number results 
and that the slower convection speed sources have the larger radius of cur- 
vatu e 
.-l/3 

at the caustic. Because the maximum focusing strength varies as 
the faster sources would be expected to be focused the greatest. 

range'of 
The 

u 'UC0 
on the figu:e, 

which has been found experimentally (see fig. 2) is indicated 
and it is seen that the corresponding range of r/6 is from 

0.4 to 0.7 for M, = 4 and 0.25 to 0.3 for M, = 8. For the focusing calculations 
the conditions corresponding to convection velocities of 0.5 u for M = 4 
and 0.7 u, for M, = 8 were selected. Incidently, the horizontgl trav%se of 
a ray from the point of boundary layer entry to the caustic varied from about 
l/4 6 to 1-1'4 6 for the conditions shown in the figure. Some ray trajectories 
in the Mach 4 boundary layer for various source speeds are shown in figure 21. 

The final item needed to estimate the boundary layer focusing is the 
reference point location and conditions. The most convenient choice for the 
reference point location would be a point at the edge of the boundary layer; 
at this height C would be C 

P ref POX 
and the ratio of C 

P max lCP 
would 

ref 
in this case essentially be the focus factor. In general, however, it would 
be wrong to select this location. In the analysis of the caustic problem, the 
solution to the nonlinear governing equation approaches the solution to 
Tricomi's equation for large y, and it is the solution to the Tricomi equa- 
tion for large y which thus forms the appropriate boundary condition for the 
caustic problem (refs. 139 and 140). This requires the signal strength to 
vary as y ml'4 at large y. Such a behavior is consistent with geometric 
acoustic behavior near a caustic. Near the caustic the gradients may be con- 
sidered as being linear and in this case the ray path is circular and the ray 
tube area varies as ylf2. Inasmuch as the signal strength varies invers 
as the square root of the ray tube area, the strength thus varies as y -1%' 
It may be noted that equation (4) exhibits this behavior as the caustic is 
approached. Thus, to apply the scaling laws, the reference point should be 
taken away from the caustic and yet be close enough so that the y-114 behavior 
occurs. For the two Mach number and convection velocity conditions chosen 
for the calculation, the relative Mach number between the free-stream and wave 
is greater than J2 in both cases. Thus the wave strengths initially decrease 
upon entering the boundary layer. The reference distance d was conveniently 
taken as the distance from the caustic to the height where the wave strength 
recovered its free-stream value. For this r ference location the wave strength 
behavior should be close to the desired y -174 variation. The choice is con- 
venient because Ap ‘P = AP,‘P. 
height was obtained%om 

The relative Mach number at the reference 

Mm (1-n) 
M = 

ref 'M; (l-n)2 - 1 
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as may be determined from equation (4) ( in its relative Mach number form) by 
setting Ap/Apo, = 1. The relative Mach number at the location of the maximum 
focusing was taken to be 1.0 (appropriate since Apm/p is so small). 

The typical free-stream strength of individual pressure waves is not 
known. Three values of Ap,/p were assumed for the calculations; 
0.01, 0.001, and 0.0001. Ap7F = It turned out that the focus factors, Ap,,, p, , 
for the two Mach number and convection velocity conditions were nearly iden- 
tical. For the three values of Ap,/p, the focus factors were, respectively, 
2.5, 4.0, and 6.3. If these factors are at all realistic, the focusing within 
the laminar layer would not appear to be very great. 

f a caustic region. - The obvious - -- -__ 
place to look for existing evidence of caustic layer behavior is in the ex- 
perimental supersonic stability-transition literature. There have been a 
number of investigations in which the laminar boundary layer was surveyed 
with the hot-wire anemometer and disturbance profiles obtained. The profiles 
typically show a region where the rms level of the fluctuations reach a maxi- 
mum. As possible evidence of the existence of the caustic region, the heights 
of these peaks must be compared with the expected caustic region height. 
This is done in figure 22, where the heights of the data peaks from a number 
of investigations have been superimposed on the caustic region results from 
figure 18. Some of the data points are from conical models and the results 
have been plotted at the local Mach number values. Because the cone shock 
refracts the noise shocklets there is some question as to whether such data 
should be used. Limited calculations, as will be mentioned later, show that 
it might be appropriate to do so for lower stream Mach numbers (Moo <- 4.5), 
but calculations have not been performed for the extreme condition at M, = 19. 
The figure shows that for tunnel Mach numbers greater than about three the 
data fall within or near the caustic region. At lower Mach numbers there are 
some cases in which double peaks were found, and in these cases the upper peaks 
also fall within the caustic region. On the whole, the experimental results 
do not appear to contradict the caustic region concept. But before the figure 
can be interpreted as establishing the existence of the caustic region, two 
issues must be considered. Since the data come from hot-wire (and hot-film) 
anemometers, one must first assess the likelihood that the noise field caustic 
region could be detected with this type of instrumentation. Second, other 
possible causes of the flow fluctuations must be considered. Concerning this 
latter issue, there are at least three possible candidates for the source of 
the peaked disturbance profiles. Two of these have been discussed previously: 
the low-frequency forced response of the laminar boundary layer as computed by 
Mack, and the high-frequency and shocklet forced response as described by 
geometric acoustics. The third candidate is the Tollmien-Schlichting instabil- 
ity wave phenomenon from boundary layer stability theory. In fact, until 
recent years the peaks in the disturbance profiles were usually attributed to 
boundary layer instability behavior. These issues will now be discussed. 

The hot-wire anemometer responds to mass-flux and total-temperature fluc- 
tuations. In a tunnel the radiated noise field induces such fluctuations in 
the free-stream by virtue of the fact that the waves are moving downstream. 
The sound field is thus detectable with the hot wire, but this fact is 
obvious since the instrument has been used for years to measure tunnel noise 
levels. For the detection of shocklet and high frequency focusing near the 
caustic the transducer must have a good high-frequency response. This can be 
a problem with the hot-wire anemometer. Estimates of the frequency response 
of the hot-wire system are not always reported. To examine the behavior of 
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frequencies whose wavelengths are the order of the thickness of laminar boundary 
layers a frequency response of into the hundreds of kilohertz would likely be 
needed. This may be beyond system limitations in many cases. 

The hot-wire is sensitive to velocity fluctuations in the mean direction 
of the flow. Thus, as the caustic is approached the wave fronts refract and 
become nearly normal to the flow,and the signal would have a tendency to in- 
crease regardless of whether or not the wave was being focused. At the caus- 
tic the power spectrum should show an increase in the energy at the high-fre- 
quency end of the spectrum due to the caustic focusing. But because the energy 
level will generally be quite low at this end of the spectrum, it is likely 
that moderate increases would have a very small affect on the overall mean- 
square value of the signal. Inasmuch as the mean-square signal levels are 
found to be greatly enhanced at the height where the fluctuation levels peak, 
it seems likely that this phenomenon may also be attributed to lower frequencies 
which are not associated with the caustic focusing. This is not to say that 
caustic layer phenomena may not be present, but rather that low frequency 
oscillations are likely dominating the mean-square signal level and the mean- 
square level cannot be used to infer results about the presence or absence 
of caustic layer behavior. What apparently is needed is disturbance profile 
information taken with a very high-pass filter,or else an examination of in- 
dividual pressure disturbances on an oscilloscope for evidence of pressure wave 
spiking. With one exception it appears that such information has not been 
obtained. Kendall mentioned (ref. 18) some findings of filtered signals and 
these will be discussed in connection with the double peak results. 

The data peaks represented in figure 22 may be primarily the result of 
the low frequency forced response of the boundary layer or of Tollmien- 
Schlichting (TS) instability wave oscillations. Until Mack's forcing theory 
results became available,the location of the peak fluctuation height was 
often referred to as the critical layer. The term critical layer is a progeny 
of boundary layer stability theory. In the early studies of instability, 
the inviscid incompressible stability equation was first studied. There is 
a singularity present in this equation when the wave speed matches the local 
flow speed and an infinite velocity perturbation is predicted. The height 
within the boundary layer where this matching condition occurs became known 
as the critical layer. Unstable TS waves at the lower Mach numbers are rela- 
tively low-frequency phenomena. From Mack's stability calculations (fig. 
12.2 of ref. 109) one may find that the shortest wavelength of an unstable 
TS wave at M, = 2.2 is about 10 6. At higher Mach numbers (like 10) the wave- 
length can get down to around 6. Important instability processes would thus 
appear to encompass a broader spectrum than the forced response of the boundary 
layer. 

The full viscous stability equations do not have the singular behavior, 
but low-speed theory and experiment show that the maximum velocity fluctuation 
level occurs where the wave speed matches the flow speed. The supersonic 
experimentalist did not have solutions to the compressible stability equations 
available until the early-to-mid 1960's (Mack's 1969 report, ref.109, contains 
the most complete results), and it appears that the term critical layer was 
applied to the height of the peak fluctuations based primarily upon the sub- 
sonic experience. But even with the numerical compressible stability theory 
results available, the experimentalist has been kept in the dark concerning 
disturbance profile results, for the publication of eigenfunction results has 
been extremely rare. The present author knows of only two such presentations. 
(For the low-speed case, theoretical velocity disturbance profiles are almost 
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always presented and compared with experiment.) For one Reynolds number and 
frequency condition, Keltner (ref. 150) showed some eigenfunction profiles 
for a two-dimensional TS wave in Mach 2.2 and 2.4 flows. The velocity fluc- 
tuations peaked at y/6 = 0.35, and it appears that this is close to the 
height where the wave speed matches the flow speed. Mack (ref. 114) (also 
shown in ref. 58) showed an eigensolution for a 60 o oblique TS wave traveling 
at 0.67 u, in a Mach 4.5 boundary layer, and the peak height occurred at 
y/6 = 0.8 when the relative Mach number was one, but the height where the 
wave speed matched the local speed was at y/6 = 0.55. The wave obliqueness 
is a complicating factor here. Mack (ref. 109) has shown that at Mach 2.2 
and 4.5 the most unstable first mode TS wave occurs with wave obliquity in 
the 60°-65O angle region. It would seem likely that the eigenfunction for 
the oblique condition would peak at a higher y/6 than the 0.35 value of 
Keltner's two-dimensional wave. It is thus quite conceivable that the lower 
data point at M = 2.2 in figure 22 could be due to TS waves (it was certainly 
thought to be so at the time by Laufer and Vrebolovich) and the outer peak 
may be due to the forced response. Until more information is available con- 
cerning the stability eigenfunctions and the forced response disturbance pro- 
files, the speculation remains idle. Apparently, at the higher Mach numbers 
both phenomena peak within the same vicinity. 

The double peak findings shown in figure 22 are interesting. Potter and 
Whitfield (ref. 143) show a Mach 5 disturbance profile which has a small sec- 
ondary inner peak, but this peak was not mentioned in their discussion and 
will not be discussed here. Laufer and Vrebalovich (ref. 141) found a rel- 
atively small secondary outer peak at Mach 2.2, and reported that it greatly 
diminished when the wire overheat ratio was reduced (so that the wire responded 
primarily to total temperature fluctuations). Such a reduction with decrease 
in overheat is typical of noise field behavior. The authors did state that 
mode diagrams (signal level vs. wire overheat ratio) were found to be straight 
lines inside the boundary layer as well as outside. These facts might indicate 
that the outer peak was an acoustic phenomenon. The secondary peak was dis- 
cussed in connection with data obtained at a frequency of 30 kHz, and there 
is no discussion about the existence of the secondary peak at other frequencies. 
There is another figure in the report which might be for 23 kHz, and the sec- 
ondary peak is also present. In any event, for these frequencies the wavelengths 
are probably a few laminar boundary layer thicknesses at the x station of 
the measurements, so the conditions are not appropriate for the short wavelength 
caustic behavior. Kendall (ref. 18) found double peaks of equal magnitude at 
Mach 3, but the frequencies were over a broad range, and therefore the outer 
peak could not be considered as strictly due to caustic phenomena. Kendall 
did find that secondary outer peaks (although not necessarily equal) existed 
at M = 1.6 and 2.2, and only for higher frequencies. The heights of these peaks 
were not given. However, these peaks only occurred near the onset of transition 
(private communication) and hence may be the result of the higher harmonic 
generation process that occurs just prior to transition. If these 
heights were near the expected caustic region height one might then argue that 
here at last was a manifestation of an effect due to the acoustic focusing. 
On the other hand, the lack of a peak in the region near the leading edge might 
be taken as evidence that a caustic region did not exist, but to establish 
this possibility more information would be needed about the filtered frequency 
ranges used in the experiment. 

As a final item to report here, some calculations were made to determine 
how the caustic layer height would change for the case of a plate tilted for- 
ward to reduce the local Mach number. The calculations are given in Appendix 
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G. The case of a plate tilted in a Mach 4 tunnel so that the local Mach num- 
ber was reduced to 2 was considered. At Mach 4 the caustic layer region and 
critical layer region are close together. The purpose of the calculation was 
to see whether the predicted height of the caustic layer region might stay 
relatively unchanged inasmuch as the local Mach 2 boundary layer would still 
be subjected to the same noise field convection speeds of the Mach 4 tunnel 
environment. If the calculated height of the caustic region did remain rel- 
atively unchanged, then perhaps the caustic region and the critical layer 
region might separate since the latter should behave as it naturally would 
for a Mach 2 flow, and the critical layer heights are lower at Mach 2 than 
at Mach 4. Using noise field convection speeds for I& = 4 from figure 2 
(Laufer's dual-wire results, u /u = 0.49),the results showed that the caustic 
layer height for the tilted plgtemcondition did remain in the outer region. 
However, the caustic height became very close to where it would be for a flat 
plate in a Mach 2 tunnel. This is a result of the'leading edge shock reducing 
the local value of u 'u to 0.38, a value close to that found in a Mach 2 
tunnel. Thus it is l?ke?y that even the forced response of the boundary layer 
would be similar to the Mach 2 tunnel case. A possibly important difference 
between the tilted Mach 2 and the tunnel Mach 2 cases would be that the noise 
field should be much more intense in the tilted case inasmuch as the radiated 
noise field is stronger in the Mach 4 tunnel than the Mach 2 tunnel. The outer 
disturbance peak in the boundary layer, which was a secondary peak in the 
Mach 2.2 Laufer and Vrebalovich (ref. 141) experiment, could in the tilted case 
become a primary peak. The Mach 4 to 2 experiment could be an interesting 
one. Perhaps an even more interesting one would be Mach 4 to, say, 1.5, since 
Mach 1.5 boundary layers normally do not experience much tunnel radiated noise. 
Comparison of the tilted Mach 1.5 case with the Mach 1.5 tunnel case could be 
revealing. A multi-Mach numbered tunnel would be ideal for such an experiment. 
Kendall (private communication) has actually performed an experiment at 
M, = 4.5 with a plate tilted to reduce the local Mach number to 3. He found 
the disturbance profile results to be similar to those found for M, = 3. The 
calculations were then repeated for Kendall's new Mach number conditions (wave 
speed of 0.69 u, used for M, = 4.5), and the same conclusion was obtained 
as with the previous calculation, i.e., the calculated caustic layer height 
for the tilted plate corresponded to that for the local M rather than M,. 
While this result appears to agree with Kendall's experimental findings, any 
further resolution of the original question concerning possibie differences 
in the heights of the critical layer, forced response peak layer, and the 
caustic region has not been reached. 

In summary, in an effort to identify the caustic region,the disturbance 
profiles from a number of hot-wire investigations of the laminar boundary layer 
were examined. Most of the published profiles were obtained from broad-band 
signals, and in the present effort were considered to be of little help. 
The caustic region is characterized by high frequency behavior, and to iden- 
tify this region the disturbance profiles must be examined after passing the 
signal through a high-pass filter. More experimental results are needed. 
The peaks in the broad-band profiles were likely the result of low-frequency 
sources such as TS waves and/or the forced response of the boundary layer 
to the acoustic excitation. To help clarify the problem, more information 
will be needed about the eigenfunction shapes from stability theory and about 
the disturbance profiles from forcing theory calculations. 

Effect on Transition 

The problem of the effect of noise on boundary layer transition provided 
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the motivation for the present study. There was a naive hope that during the 
course of the study an important transition promoting mechanism would be clearly 
revealed, but no such revelation has yet occurred. A few thoughts on the 
subject will be presented here,primarily concerning some possible effects 
of the shocklets in the boundary layer noise field. 

As discussed earlier in the report, shocklets with zero-thickness wave 
fronts ensure the presence of a spectrum with the slowest high-frequency drop- 
off rate, and as has been emphasized, shocklets should be associated with 
high-frequency behavior. Within the context of linear boundary layer stability 
theory, these frequencies would appear to be too high to affect transition. 
This statement may not hold, however, for high Mach number flow. Mack (fig- 
ures 12.2 to 12.7 of reference 109) has published neutral stability curves 
on wave number-Reynolds number diagrams for Mach numbers in the range of 
1.6 to 10.0. At the lower Mach numbers the shortest wavelength for an un- 
stable instability wave is about 106. As the Mach number increases higher 
mode oscillations can exist, and by M = 10 the shortest unstable wavelength 
has decreased to about 0.56. This may be considered a relatively high-frequency 
oscillation, and the presence of shocklets ensures that free-stream disturbances 
in this frequency range exist. 

If a shocklet is focused by the boundary layer, a distortion of the bound- 
ary layer profile would occur in the immediate vicinity of the caustic. In 
the two-dimensional case, near the triple point the profile may be locally 
wake-like because the flow passing through that point would be retarded slight- 
ly more than flow passing either above or below the point (assuming that the 
shock strength is greatest at the triple point). The vertical scale of this 
wake-like flow, however, would be very small; typically around l/2 percent or 
less of the laminar boundary layer thickness. This region, with its doubly 
inflected profile, would be unstable, and passing shocklets could provide the 
high frequency input disturbances to make this flow go locally turbulent. 
For the three-dimensional interactions associated with the oblique portions 
of the incoming shocklet, the perturbation may be weaker, but cross flows 
would be induced and the flow pattern made more complex. The overall picture 
would seem to be that of very small vertical scale turbulent regions, akin to 
vortex sheets or wakes, embedded in a relatively thick laminar layer, and it 
is difficult to see how this aspect of the acoustic phenomenon could signifi- 
cantly affect the overall boundary layer transition pattern. However, the 
streamwise extent of the small wakes and their local speeds in relation to 
local TS wave speeds may be of significance in the early nonlinear stages 
of transition. 

Under low-level disturbance environmental conditions, boundary layer 
instability phenomena are thought to play a major role in the zero pressure 
gradient transition process. One wonders, perhaps based on the knowledge 
that water waves are generated most efficiently when the wind speed, and 
thus the pressure field, matches the wave speed (ref. 15l),whether TS waves 
are induced more efficiently when the convection speed of the noise field 
matches the speed of the TS waves. If the TS waves happened to be in the 
unstable wave number-Reynolds number region, one further wonders whether 
the noise field would then be a more effective promoter of transition. This 
idea seems plausible but the mechanism remains obscure as to how the free- 
stream disturbances generate or affect the TS waves. This problem has been 
termed the receptivity problem (refs. 33 and 36). If the matching of speeds 
is important,it may be observed that Mack's stability calculations (fig. 
13.21 of ref. 109) show that in the Mach number range of about 2 to 4, the 

44 



most unstable first-mode TS wave had an x-direction propagation speed which 
was supersonic with respect to the free-stream. Thus, in this Mach number 
range the convected speeds of the Mach wave radiation noise disturbances could 
match the downstream speeds of the TS waves. These TS waves were oblique waves 
such that the Mach number component normal to the phase fronts were subsonic, 
and therefore these waves would be too oblique to match the obliqueness angle 
of noise disturbances. Nonetheless it is interesting to observe that tunnel 
transition Reynolds numbers are generally the lowest in the Mach 3 to 4 range. 
For the cases where phase velocities of the TS waves are greater than the 
downstream convection speed of the radiated noise field, there could be a 
match between the TS speeds and the velocity of the aforementioned possible 
vortexLsheet type of disturbance created in the interaction process. Thus 
vorticity could possibly be feeding into TS waves, but the importance of the 
match in speed might be offset by the mismatch in the vertical scales of the 
disturbances. 

In the supersonic case some researchers (refs. 18, 41, 58) have talked 
about the forced disturbances turning into TS waves, and Mack (ref. 41) has 
expressed the thought that the conversion would most likely occur if the 
forced disturbance amplitude profile matched the eigenfunction. A close match 
can apparently occur with first mode eigenfunctions at M = 4.5 (again, see 
fig. in refs. 114 and 58). However, for higher frequencies associated with 
the shocklets, the match would likely have to be with higher mode TS waves. 
Such a matching would appear to be difficult to achieve. (Incidently, it ap- 
pears that the wall pressures associated with TS waves can sometimes be much 
greater than the levels at the outer edge of the boundary layer, see Mack's 
(ref. 114j figures 12.13 and 12.14. This situation never occurs for the forced 
response of the boundary layer.) 

Experimental evidence will be needed to determine with any certainty 
whether caustic focusing of the noise shocklets affects transition. When the 
shocklet thickness is assumed small compared to the boundary layer thickness, the 
caustic layer behavior would not be expected to change much with increase in 
distance from the leading edge of a model. If measurements at low Re values 
were to show that fluctuations at the caustic layer height increased wfth down- 
stream distance, then, provided this behavior is not the low-frequency response 
predicted by Mack, perhaps it could be concluded that there is some credible 
transition promoting mechanism associated with the focusing. In this regard 
one can again mention the low Mach number finding of Kendall (ref. 18) that a 
high frequency outer region peak did show up near the onset of transition. 

As a final thought, it should be pointed out that with shocklets present 
in the noise signatures there could be some interesting shocklet-on-shock 
interactions with the detached shock at the leading edge of the model. With 
a flat plate model, for example, there is always a small detached shock 
region at the leading edge and the intersections due to shocklets moving down- 
stream from all sides of the model would be rippling back and forth along the 
leading edge. For slow sources (picture, for example, a sidewall source) 
the intersection region could be subsonic with respect to the subsonic flow 
immediately behind the models detached shock; for the faster source the region 
could move supersonically with respect to the stagnation region flow. 

Obviously, much more work is required to even detect and measure the 
presence of caustic behavior, and to determine if and how the phenomenon af- 
fects transition would require a super sleuth with unique experimental equip- 
ment and unique patience. 
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Receptivity-Related Observations 

The problem of how TS waves are generated by free-stream disturbances is 
obviously important to the transition process and is at the core of the re- 
ceptivity issue. In calculations of the forced response of the boundary layer 
to either low-frequency disturbances or shocklets, the receptivity problem is 
not addressed. In the previous section the problem was touched upon in con- 
nection with the shocklet-boundary layer interaction and the possible match- 
ing of convection speeds and disturbance profiles with TS wave speeds and 
eigenfunction shapes. In the present section the shocklet interaction problem 
will not be considered further, and instead some observations and comments 
will be presented concerning two of Kendall's experimental findings. The 
first item is peripheral to the receptivity problem while the second is more 
directly concerned with the problem. Both items deal with the response of 
the boundary layer to the tunnel sound. 

In figure 7 of reference 18,Kendall presents cross-correlation curves 
obtained from two hot-wires in the JPL 20-inch tunnel. One wire was located 
just upstream of the leading edge of a flat plate and the other was located in 
the laminar boundary layer 5 cm from the leading edge and at the height where 
the fluctuations were the greatest. Curves for five different free-stream 
Mach numbers, ranging from 5.6 to 1.65, are shown for conditions of nearly 
constant unit Reynolds number. The maximum correlation coefficient was found 
to diminish with decreasing Mach number. This fact may well be an indication 
that at the lower Mach numbers tunnel sound may be less effective than other 
unsteadiness modes in disturbing the boundary layer, but another possibility 
is offered here for consideration. The decay in the correlation results with 
decreasing Mach number may simply be reflecting the decay of the coherency 
of the noise field itself. 

The sound field remains substantially correlated only over a limited down- 
stream distance. Kendall (ref. 17) made measurements at M, = 4.5 in the 
free-stream with various wire separation distances, and the results show 
that the correlation coefficient was down to 0.1 at a wire separation distance 
which may be estimated to be about six tunnel wall displacement thicknesses 
(at the location of the acoustic origin of signals reaching the wire; from 
Appendix B, 6* - 1.64 cm). This behavior may perhaps be typical of other Mach 
number conditions as well. The displacement thickness on the tunnel walls be- 
comes smaller as the tunnel Mach number is reduced, and therefore, with ; 
constant wire separation distance the relative separation distance, Ax/g , 
increases as the tunnel Mach number is reduced. The present author has 
estimated (see Appendix B) that for the flat plate measurements (ref. 18) 
the ratio of wire separation distance to tunnel wall displacement thickness 
increased from 2.7 to 10 as the tunnel Mach number dropped from 5.6 to 1.65 
@* = 1.85 to 0.50 cm, respectively). This factor would seem to bias the 
correlation results in favor of the higher Mach numbers. Thus, even if the 
Mach 1.65 laminar boundary layer was just as responsive to the sound field as 
the Mach 5.6 layer, it appears reasonable to expect that the correlation co- 
efficient would be smaller for the lower Mach number cases because of the 
relative decrease in coherency of the incoming forcing sound field at the 
larger values of Ax/&*. As Kendall states, further investigation on this 
matter is needed. 

The second item is also concerned with the free-stream boundary layer cor- 
relation data. Kendall presented (ref. 17) Mach 4.5 and 2.2 correlation curves 
for three different x-locations of the downstream wire (whereas the results 
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discussed above were for one wire separation distance). These curves are shown 
in figure 23 of the present report (because of space limitations the portions 
of the curves for time delays greater than 400 usec have been omitted). The 
most unusual and interesting feature of the curves is the growth of the nega- 
tive peak with increasing downstream distance. This negative-peak growth is 
not present in the free-stream cross-correlation curves (at least at M, = 4.5, 
which is the only case shown in reference 17), and in turbulence work in 
general the peaks in space-time correlation curves, both positive and negative, 
decrease as the transducer separation distance is increased. The growth in 
the negative peaks shown in figure 23 thus seems unusual enough to warrant 
attention. The following simple observation can be made concerning the peaks. 

If the separation distances are divided by the time delays of the peaks 
to determine convection speeds, albeit a very questionable procedure when dis- 
persion is present, one obtains the following results for the M, = 4.5 case. 
The speed associated with the positive peaks is about 0.65 uoo and that with 
the negative peaks is about 0.87 urn (the curve for x = 2.54 cm has been ig- 
nored since the negative peak has not substantially developed). These speeds 
are rather close, respectively, to the convection speed of the focusing sound 
field (and again, it is questionable to talk about a single speed) and speeds 
of unstable TS waves (from fig. 13.21 of ref. 109, at Re = 2.25 x lo6 the 
phase and group speeds of the most unstable first-mode TSxdisturbance, which 
is a 60° oblique wave, are, respectively, approximately 0.82 uo3 and 0.92 u,). 
Thus, the positive peaks appear to be associated with the forced response of 
the boundary layer to the sound field while the negative peaks may be associated 
with TS wave behavior. The negative peaks grow because the unstable TS waves 
move faster than the forced waves and with increasing downstream distance the 
TS waves move ahead of the forced waves and thus reveal their identity. 

As was mentioned earlier in the report, the wave speed as a function of 
frequency can be obtained from the phase information in the Fourier transform 
of the correlation curves. Kendall determined this information from each of 
the three Mach 4.5 curves shown in figure 23 and also from three additional 
correlation curves (not published) for positions further downstream. The dis- 
persion results show that at all frequencies the measured speeds increase with 
downstream distance of the boundary layer wire (the six dispersion curves are 
also shown in the review article by Reshotko,ref. 58). At the greatest Re 
of the downstream wire at 2.2 x 106, the dispersion curve was found to resegble 
that of a 60° oblique first-mode TS wave. The increase in the measured speed 
with downstream distance has been described (refs. 17 and 58) as an acceleration 
of the wave system, and the fact that the speeds farthest downstream are similar 
to those of unstable TS waves has been taken as evidence of a conversion from 
the forced waves to the free TS waves. Inasmuch as those flow processes which 
dominate the correlation curves also have the greatest impact on the dispersion 
measurements, one can interpret the "acceleration" as reflecting the fact that 
the greatest correlation shifted from the "slow" positive peak to the "fast" 
negative one with increase in downstream distance. It seems likely that the 
negative peak also dominated the correlation results at the maximum downstream 
distance condition, and hence the fact that the dispersion curve resembled TS 
wave behavior may be construed as further evidence that the negative peak 
reflects TS wave processes. 

At M, = 2.2, the positive and negative peaks for the two most downstream 
correlation curves in figure 23 corresponds to speeds of, respectively, 0.37 urn 
and 0.55 u,. Again, the positive peak has a speed which corresponds closely 
to the forcing sound field speed and the negative peak corresponds rather 
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closely to the speeds of unstable TS waves (the phase and group speeds of the 
most unstable TS wave at Mach 2.2 are, respectively, approximately 0.49 u 

O" and 0.59 u,). Dispersion results have not been published, but it seems 
likely that the acceleration type pattern would be found. It should be noted 
that for both Mach number cases the smallest Re values for the downstream 
wire are greater than the calculated critical Re$rolds number. 

The picture which emerges here is that within the supersonic laminar 
boundary layer there are two major unsteady flow processes, the forced response 
of the layer to the tunnel acoustic excitation and the TS wave generation 
and propagation. Each travels at its own appropriate speed and transducers 
respond to both types of fluctuations. What is new here and pertains directly 
to the receptivity issue is the idea that the measurements could be showing 
that the forced response and the TS waves are negatively correlated with respect 
to each other. An incoming acoustic disturbance which has a positive change 
in mass flux, for example, induces a forced response also with a positive 
change in mass flux and a TS wave with a negative change in mass flux at a 
given location. Why the forced and TS waves should be anticorrelated remains 
to be explained. (Could it have something to do with the maintenance of a 
zero initial condition for induced responses at the leading edge stagnation 
region?) 

The question arises as to whether the negative correlation result could 
be due to the particular y/6 value of the downstream wire. The answer would 
appear to be no because most of the disturbances are low-frequency first-mode 
oscillations. If the M, = 4.5 mass-flux oblique wave eigenfunction published 
by Mack (ref. 114; also in ref. 58) is typical of first-mode behavior,then 
there is no phase reversal of the oscillations across the boundary layer 
(in contrast to the incompressible case and the &,= 2.2 two-dimensional case 
(ref. 150) where a 180' phase reversal occurs in the outer region of the 
boundary layer). With no phase reversal, the sign of the correlation would 
not depend on the vertical location of the wire within the boundary layer. 

A consequence of negative correlation would be that forced and TS waves 
destructively interfere near the leading edge. Perhaps the cancellation pro- 
cess partly accounts for the fact that the measured amplitude of the fluctuations 
fall below the theoretical forcing theory values. Inasmuch as the higher 
frequency TS waves travel faster than the lower ones, cancellation effects 
would change in a complicated fashion with increase in x. More experimental 
work, wind tunnel or numerical, would of course be helpful. 

Use of Pressure Transducers for Noise Measurements 

The free-stream data which have been presented and discussed in the present 
report come primarily from published hot-wire anemometer measurements. The 
majority of published tunnel noise measurements, however, have been made with 
pressure transducers. Often these measurements have been made in connection 
with transition experiments and often only to obtain a relative measure of 
the change in the noise level with change in the tunnel pressure (i.e., change 
in Reynolds number). Convection velocity measurements of the free-stream 
noise have not been attempted with pressure transducers. The transducers 
have been employed by two different means. In most cases the transducer has 
been flush mounted on a flat plate, wedge, or cone model, with the transducer 
near enough to the leading edge so that it is under the mounting model's 
laminar boundary. More recently the transducers have also been used in a pitot 
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tube to measure the fluctuating pitot pressure. The pressure transducer ap- 
proach is generally chosen because it ostensibly does not require a long de- 
velopment program, but the pressure transducer method is open to serious 
question. 

Although researchers are a little more cautious now, the implicit as- 
sumption in the flat plate-pressure transducer technique has been that the 
laminar boundary layer is transparent to the tunnel noise. Based on the 
previous refraction considerations, it would appear that this assumption 
is not very good. Even without a boundary layer present there would be a 
considerable problem due to the fact that the ratio of surface pressure rise 
to incident pressure rise across a shocklet varies with the angle of incidence 
of the shock. But the boundary layer changes all of this. As belabored in 
the present report, the shocklets are refracted away from the surface at the 
caustic, and thus the boundary layer acts as a low-pass filter to the surface. 
According to Mack's calculations (ref. 40), the boundary layer reacts to low 
frequency long wavelength acoustic disturbances. The results were Reynolds 
number dependent, but generally there was a diminution of surface pressure 
levels with increase in frequency of the incoming noise field. There appear 
to be enough questions concerning the pressure transducer technique to put 
its real efficacy into serious doubt. However, comparisons of hot-wire mea- 
surements with pressure transducer measurements (ref. 72) show that at times 
there can be fair agreement. 

With the fluctuating pitot pressure method the concern is over 
the normal shock standing in front of the diaphragm. Depending on the con- 
vection velocity of the source, the shocklet-normal shock interaction region 
can move along the normal shock at speeds which are subsonic, sonic (termed 
a resonance condition), and supersonic with respect to the flow immediately 
behind the shock. This factor can significantly affect the strength of the 
wave transmitted across the normal shock. For the case of a shock source 
where the interaction is of the subsonic type, the disturbance transmitted 
through the normal shock is no longer a shocklet but instead becomes a pres- 
sure wave whose strength decreases with distance from the normal shock (ref. 
152). In this case the normal shock standoff distance becomes important and 
this distance depends on the stream Mach number and the diameter of the pres- 
sure probe. The distortion of the incoming waves could be quite significant 
when the diameter of the probe is about the same as or larger than the thick- 
ness of the radiating boundary layer. Both this method and the flat plate 
method suffer from partial pressure cancellations across the face of the 
diaphragm if the diameter of the diaphragm is not significantly less than the 
thickness of the radiating boundary layer. Finally, it is well known that 
vorticity and temperature spots create sound pulses upon passage through a 
shock and this could be troublesome in some cases. Again, comparisons of hot- 
wire and fluctuating pitot pressure data sometimes show reasonable agreement 
(refs. 4 and 62). 

The measurement of fluctuating quantities is never an easy task. Perhaps 
some of the problem is due to the difficulties mentioned above. 
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4. CONCLUDING REMARKS 

Motivated by the noise-boundary layer transition problem in supersonic 
tunnels, a study of the noise field and the noise-laminar boundary layer in- 
teraction was made. The noise field is dominated by the sound radiating 
from the tunnel nozzle turbulent boundary layers, and in the present study 
a simple model of this noise field was adopted. The noise field has been 
modeled as a Mach wave radiation field consisting of discrete waves emanat- 
ing from coherent turbulent entities moving downstream within the supersonic 
turbulent nozzle wall boundary layer. The individual disturbances are liken- 
ed to miniature sonic booms and these strafe any object in the test section 
as the sources move downstream. The weak shock wave feature of the noise 
model is in agreement with existing optical evidence concerning the radiated 
noise from turbulent boundary layers. While this unsophisticated model would ' 
be considered a retrograde step from a turbulence modeling viewpoint, none 
the less,the statistical equations describing the noise field point out in 
a limited qualitative fashion the importance of number, size, shape, and 
speed of the acoustic sources on the statistical properties of the noise field. 
The mean, autocorrelation, and power spectral density of the field are ex- 
pressed in terms of the wave shapes and their average arrival rate. The mod- 
eled rms amplitude distribution across the wind tunnel test section and the 
shape of the power spectral density curve agree quite well with experiment. 
With considerable empirical input it could be used for quantitative predictive 
purposes, but this is beyond the scope of the present study. 

The emphasis in the analysis of the interaction of the wave field with 
the laminar boundary layer was on the weak shock behavior. When weak shocks 
interact with the laminar boundary layer they are refracted, and equations 
show that focusing of the wave fronts will occur. The refraction equations 
for the two-dimensional interaction, which are known, were rederived using 
two linear methods, a conventional fluid dynamics approach (a repeat of an 
existing derivation) and the method of geometric acoustics for a nonuniform 
moving medium (a new derivation). In the latter approach the shock strength 
variation is described in terms of the shock ray paths, and the differential 
equation describing the ray path was determined. Some typical ray trajectories 
through a Mach 4 laminar boundary layer for waves with different source speeds 
were computed and shown. In this approach the focusing is considered to ulti- 
mately be due to convergence of the ray paths and complete convergence occurs 
at the height within the boundary layer where the flow velocity is sonic with 
respect to the wave. This classic focusing condition is called a caustic; 
the linear theories predict an infinite pressure rise across the shock at the 
caustic. For oblique three-dimensional interactions complete collapse of the 
ray tubes does not occur. 

The height at which the weak shocks undergo this focusing, termed the 
caustic layer height, depends upon the boundary layer profile and the downstream 
convection velocity of the source of the wave. The caustic layer height within 
the lsminar boundary layer was computed for a range of free-stream Mach 
numbers and source-to-free-stream convection velocity ratios. The heights 
were found to lie in the outer half of the boundary layer for all but the very 
slowest sources (even stationary waves are focused at a height of four-tenths 
of the boundary layer thickness). Cooling the boundary layer lowers the height 
of the caustic layer. More knowledge about the source speeds of the noise 
field as a function of tunnel Mach number will be needed to more precisely 
locate probable caustic layer regions. Detection of the caustic layer is not 
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a clear-cut matter because in supersonic flow the fluctuations associated with 
Tollmien-Schlichting instability waves also reaches maximum intensity in the 
outer half of the boundary layer near their critical layer heights, and it 
appears that steady state forced response of the boundary layer to the sound 
field also peaks in the outer region. 

The phenomenon of the focusing of weak shocks has been studied rather 
extensively by sonic boom researchers, and some results of shock focusing 
experiments are cited. A scaling law from sonic boom theory was used to 
estimate the maximum amount of focusing near the caustic. The scaling law re- 
quires the value of the radius of curvature of the shock ray path at the 
caustic. To estimate this radius for the boundary layer case some rather 
simple approximations of Mach 4 and 8 laminar boundary layer profiles were 
used and the radii were determined using the ray path differential equation. 
This exercise indicated that the maximum amount of focusing may not be too 
intense. Wave strength increases were a factor of two to six for incoming 
shock strengths of 1 to 0.01 percent of the free-stream pressure. 

Another element which has been considered is the thickness of the very 
weak shock waves associated with the noise radiation process. For weak shock 
waves the equations show that the thickness is inversely proportional to the 
shock strength and the free-stream unit Reynolds number. Shock thicknesses in 
the radiated pressure field could occupy significant portions of the disturbance 
pressure signatures from individual sources in small tunnels (which have small 
scale disturbances) operating at low unit Reynolds numbers. Such smoothed 
shock fronts reduce the high-frequency content of the noise spectrum. The 
shock thickness factor could thus be an important element in some noise model- 
ing problems. An expression is given which shows the ratio of the shock thick- 
ness to laminar boundary layer thickness as a function of the length Reynolds 
number and Mach number. For a length Reynolds number of 106, the thickness 
ratio could be close to one for the weak noise field shocks; for lower Reynolds 
numbers the ratio progressively increases. Thus, because the shock refraction 
equations are for shocks or high-frequency Fourier components of the wave 
field (wavelength small compared to laminar boundary layer thickness), the 
computed focus factors should perhaps be regarded as upper bounds rather than 
predicted values. The peak in the mean-square signal level from a hot-wire 
anemometer that is commonly found in the outer portion of the laminar boundary 
layer in a supersonic tunnel is likely due to Tollmien-Schlichting waves or 
the low-frequency forced response of the boundary layer as a result of the 
acoustic forcing field. 

Concerning the all-important noise-transition problem, little substance 
is offered here. From a boundary layer stability standpoint the high frequencies 
associated with the shocklets are probably too high to be important except 
possibly at very high Mach numbers where wavelengths less than the boundary 
layer thickness can be unstable. The shocklets may have importance in some 
nonlinear aspect of the "receptivity" problem, particularly since they move 
downstream at the same velocities as portions of the boundary layer. 

Some observations concerning hot-wire anemometer cross-correlation mea- 
surements are presented. Finally, considering that high-frequency components 
of the noise field are possibly refracted back into the freestream by the 
boundary layer in the outer region, and that the low-frequency components 
are possibly exaggerated by the forced response of the boundary layer, the 
use of microphones under laminar boundary layers to measure the noise field 
is considered a rather questionable technique. 
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Appendix A 

Noise Field Intensity Distribution Across Test Section 

The approach to be taken is as follows. One can think of the test sec- 
tion walls as being divided into a number of longitudinal alleyways, each 
of width As, along which the wall bodies travel with a random spacing. 
The signal contribution from an alley to the mean-square value of a free- 
stream probe will be proportional to As because, as shown later, the sig- 
nal contribution is proportional to the average arrival rate of wall body 
wave signatures, and the wider the alley the greater the number of bodies 
passing along it. If f(t) is the signal shape variation with time from a 
typical wall body, then the signal contribution from the alley will also depend 
on f2(t)dt, where the integral is evaluated over the duration of the typi- 
cal individual f(t) signature. From sonic boom work it is known that the 
strength of the shock wave system decreases with distance from the body, and 
it will be shown next that an approximation to the preceding integral is pro- 
portional to b-m, where b is the distance from the body path and m is a 
positive constant. Thus, if a probe is at a distance b from a wall alley, 
the contribution from the alley to the mean-square value of the probe's signal 
will be proportional to bsrn As. Inasmuch as the signals from the various 
alleys may be considered statistically independent, the total mean-square sig- 
nal level will be proportional to C. b.-m As., where the summation is over all 
of the alleys. (Actually this summatio: would b e proportional to the variance 
of the signal since the mean is assumed subtracted from the mean-square level 
in accordance with the experimentalist's practice of removing the dc signal 
content.) For the purpose of evaluating the sum it is convenient to let the 
As. 
wh&e 

approach zero, in which case the sum becomes the line integral fi bsm(s)ds, 
the path of integration is around the test section perimeter. 

Close to a body, in the so-called near field, the sonic boom wave system 
can be rather complex if the shape of the body is complicated. However, far 
from the body, in the far field, the wave system coalesces into a simple shape, 
the well known N wave. This coalescence is a nonlinear effect, and the 
stronger the wave (or, for a given body shape, the higher the Mach number) 
the sooner the N wave 

7 
evelopes. 

b-3 4 
In the far field the strength of the pres- 

sure wave decays as , where b is the distance from the flight path. 
As discussed above, it is not just the amplitude that is important but the 
value of / Ap2(t)dt, where Ap(t) is the time signature of the pressure change 
and the integration is over one signature wavelength. If X is the spatial 
signature wavelength, then according to reference 153, the area under the pres- 
sure signature curve is independent of di ante from the path if the signature 
is plotted in the form of (Ap/p,) (b/X) 38 vs. (x/A) (b/X)-li4, where x 
is a coordinate parallel to the flight path. Hence 

314 
d = const. 1 

or 

1 

I Ap(x'A) d(x/X) = (b/X) 
-112 

const., 
J I 
0 

P 
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In the far field the signature shape in the above format does not change with 
b, and one then finds that 

3'4 2 

( : ) 1 d( X/X -k;) = const. 
(b/X) 

2 

or 

1 

J Ap(;'A) d(x'X) = (b/A) 
-5'4 

const. 2 
0 

Therefore, in the far field the integral of the pressure fluctuation squared 
is proportional to (b/X)-5'4. In the near field, even though Ap(t)dt 
is still proportional to b-112, the signature shape in the above format does 
change and hence / Ap2(t)dt would probably not follow the bB514 behavior. 
This is unfortunate because the wall bodies are considered to have such weak 
shocks that their wave systems are likely to remain as near field signatures 
as the wave propagates across the test section. In an effort to retain the 
-5'4 decay law it is argued here (rather unconvincingly) that because of the 
rather limited range of b/X involved, where X is, say, about the size of 
the thickness of the wall boundary layer, the spatial format signature shapes 
do not change very much and the -5'4 decay law can be used. Under these cir- 
cumstances, the line integral to be evaluated becomes 6 bB514(s)ds, where s 
is the circumferential distance around the test section from some reference 
point to a body path line. 

The preceding integral was numerically evaluated around a circular-and 
a square-shaped test section geometry for various probe locations across the 
test section. To simulate the rms signal level the square root of the in- 
tegral values was taken. The results are displayed in figure 24 along with 
hot-wire data of Laufer (ref. 154) taken in the JPL 20-inch tunnel. To the 
scale of the figure there was no difference between the estimated distributions 
for a circular or square test section. The figure shows that for a circular 
or square test section the estimated intensity distribution is quite uniform 
across most of the test section and, except in the vicinity of the boundary 
layer, the result is in agreement with the data. 

The scatter shown for the data is a result of the difficulty in trying 
to replot Laufer's data in the form of the present plot. Laufer presented 
results for three different free-stream Mach numbers of the variation with 
distance from the wall of the rms velocity fluctuation level nondimensionalized 
by the level at the centerline. The distances were nondimensionalized by 
the wall boundary layer thicknesses, and neither the values of d nor the 
tunnel flow conditions were given. To extract the actual distances for use 
in figure 24, values of 6 had to be estimated, and the cross-hatched region 
reflects the uncertainty in the estimated 6 values. The values of 6 were 
obtained using reference 155, wherein Laufer presented test section noise 
levels in the JPL 20-inch tunnel versus 6 for various Mach numbers and 
tunnel pressures. The Mach numbers were 2.2, 3.0, 3.5, 4.0, 4.5, and 5.0. 
The tunnel conditions were again not specified, but it is likely that they 
encompassed the typical conditions used in Laufer's experiments. From his 
figure the following range of 6 values were estimated and used in figure 
24; M = 2.0, 6 = 2.5 - 3.8 cm; M = 3.5, 6 = 3.9 - 4.6 cm; and M = 4.5, 

53 



6 = 5.0 - 5.8 cm. 

The estimated boundary layer edge locations are shown in figure 24, where the 
distance from centerline to wall was taken as 25.4 cm. Laufer's data (ref. 
154) show that with increasing Mach number there is a decrease in the extent 
of the nonuniform region outside of the boundary layer. The height above the 
boundary layer at which the signal departed from the centerline value fall 
from approximately 3.26 at M = 2 to 2.26 and 1.16 for Mach numbers of 3.5 
and 4.5, respectively. Thus in figure 24, the Mach 2 data lie in the left- 
hand portion of the cross-hatched region and the Mach 4.5 data make up 
the right-hand portion of the region. The present model is therefore more 
in agreement with the high Mach number data than the low Mach number data. 
It is of interest to note that at Mach 2.0 most of the noise-producing eddies 
travel downstream within the boundary layer at a subsonic Mach number with 
respect to the free-stream. Mach wave radiation would not be possible but 
velocity fluctuations would still be induced in the free-stream. Phillips 
(ref. 156), in his theoretical study of the irrotational motion outside of 
subsonic turbulent flows, predicted that the motion of the interface between 
turbulent and nonturbulent flow at the edge of the boundary layer induced 
velocity fluctuations in the free-stream irrotational flow which are inversely 
proportional to the fourth power of the distance from the source. Phillip's 
prediction has been verified by Bradbury (ref. 157), for the case of a two- 
dimensional jet in a slow moving stream, and by Bradshaw (ref. 158), Kibens 
and Kovasznay (ref. 159), and Kovasznay, Kibens, and Blackwelder (ref. 160) 
for the subsonic boundary layer. Thus, near the wall at the lower Mach num- 
bers the subsonically induced free-stream fluctuations could be significantly 
contributing to the total fluctuation level. Because the subsonically and 
supersonically induced fluctuations follow different distance decay laws, it 
could be expected that at the lower Mach numbers the intensity distribution 
of the free-stream disturbances would be Mach number dependent near the edge 
of the boundary layer. The present model does not take into account the sub- 
sonic disturbances and is thus more appropriate for the higher Mach number 
flows. The comparison with Laufer's data at the higher Mach numbers is indeed 
more satisfactory. 
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Appendix B 

Estimates of the Boundary Layer Thickness and Displacement Thickness 
Along the Nozzle of the JPL PO-Inch Tunnel 

In the present report, knowledge of the boundary layer thickness and dis- 
placement thickness along the nozzle of the JPL 20-inch tunnel was needed for 
an analysis of some of Kendall's hot-wire anemometer measurements taken in 
the JPL tunnel (refs. 17, 18, 68). Inasmuch as the boundary layer data was 
not available in the literature, estimates of the thicknesses had to be made 
for a variety of Mach number and stream unit Reynolds number conditions. 
The method of obtaining these estimates along with the calculated results 
are presented herein. 

The estimates of the nozzle boundary layer displacement thickness for 
M, 5 5 were obtained using a very simple formula given in the report of 
Maxwell & Jacocks (ref. 161). This formula is 

where, 
PO 

k = 0.0131 (- 
poao) 

with, 

6* = displacement thickness, ft 

X = longitudinal distance from throat, ft 

a 
0 

= speed of sound at stagnation conditions, ft/sec 

1-I, 
= coefficient of viscosity at stagnation conditions, lb -sec/ft 2 

f 

PO 
= density at stagnation conditions, lbf-sec2/ft4 

-z 
6 is a dimensionless boundary layer parameter which depends on M,. A curve 
of 6 

* 
vs. M, is given in the Maxwell & Jacock report, and the present author 

found that the following equation fitted the curve rather well in the Mach 
number range of 1 to 6.7: 

* 
6 = 20.0 - 18.0 sin A 

where A is a quantity in radians given by 

A = [0.275 (6.7 - Mm)10-g4 

PO 
is calculated from po/gcRTo, where gc = 32.2 lbm-ft/lbf-sec2. The adequacy 

of the above formula for the present case was determined by comparing calcu- 
lated 6 values with those measured in the test section of the JPL 20-inch 
tunnel. Test section boundary layer measurements of the curved wall boundary 
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layer were taken by Dayman (ref. 107). The x in the formula is for the 
longitudinal distance from the throat to the end of the nozzle, but the x 
values in the Dayman report are for the distance along the curved wall to the 
test section measurement station. Day-man's x values were used in the formula 
for simplicity. The following table presents the tunnel parameters, the mea- 
sured and calculated displacement thicknesses, and the percent error. Values 
of viscosity were obtained using Sutherland's law, p[(lbf-sec)/ft2] = 
(2.2 x 1O-8 &'(l + 198.6/T). 

MC0 PO hia> To (OR> 

1.4 21.27 570 

1.64 22.24 573 

2 6.58 540 

2 26.11 580 

3 10.83 538 

3 29.01 579 

4 17.41 558 

4 49.32 580 

5 63.82 605 

* 
x(in) 6 (cd 6* (cm) % error 

measured calculated 

66 0.434 0.382 -11.93 

79 0.511 0.482 - 5.62 

92 0.767 0.759 - 1.10 

92 0.632 0.631 - 0.15 

112 1.392 1.405 0.90 

112 1.209 1.236 2.27 

119 2.243 2.268 1.12 

119 1.943 1.968 1.30 

118 2.885 2.861 -0.82 

It is seen that except for the Y = 1.4 calculation, very good agreement exists 
between the results from the simple formula and the measured values. 

Estimates were next made of the displacement thickness at the acoustic 
origin of the signals reaching a hot-wire anemometer in the center of the 
test section. Kendall made such measurements, although the x location of 
his wire was not given. It was assumed here that the x locations given 
above corresponded to the wire locations. Disturbances on the Mach wave 
front from a moving source travel along a path which nearly traces the Mach 
angle, 8, for the free-stream. As may be seen in the sketch shown in figure 
25, an "average" source path lies somewhere off the centerline of the walls. 
This distance was taken as 12.7 cm from the centerline (half the distance 
to the wall). For the calculations of A*, the x distance used was the x 
distance in the previous table minus the value of D as calculated by the 
expression given in the sketch. For the conditions of interest in Kendall's 
work, neither the stagnation temperatures nor pressures were given. The 
unit Reynolds numbers, however, were specified. The values of T were 
guessed, based on the previous table information. With M, and 'T known, 
the values of unit Reynolds number per unit of stagnation pressure Ean be 
computed. The parameters and results are shown in the table below. 
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MCI2 
- -. 

1.65 

2.2 

2.4 

3 

3.25 

4.5 

4.5 

4.5 

4.5 

5.6 

5.6 
- . -- 

Re/cmxlO -4 T,('R) PO hia> x(in> 
* 

6 (cm> 
-.c. _ _. . . _ -- 

4.2 

3.4 

3.9 

4.2 

4.0 

3.7 

3.9 

5.7 

7.2 

3.3 

4.3 
-. . - -- _ . -. _- .-. 

..- _- -.. . . _ -_ .~-- _ _ -. -_ -__ 

540 7.37 64 0.50 4.77 2.38 

540 4.42 73 0.73 

540 5.60 76 0.81 3.74 3.03 

540 8.22 80 1.10 

540 8.91 79 1.22 2.9 3.58 

560 15.90 70 1.81 2.23 4.04 

560 16.77 70 1.80 2.23 4.01 

560 24.51 70 1.70 2.23 3.79 

580 32.79 70 1.64 2.23 3.66 

580 23.50 57 1.93 1.87 3.60 

580 30.62 57 1.85 
,.. _..~_. - ._.- _ 

For Ma& numbers greater than five,Pate (ref. 8) noted that the existing 
values of 6* result in ~5"~ values which are too large. Based on Pate's 
figure B-7, the present author chose to represent ?? for 5 < M < 9.5 by - co- - 

6* = 1.882 (M-l) + 4 

This equation was dsed in the computation of the M = 5.6 results above. Some 
v lues of 
3 

6 are also gixen in the Table. These values were obtained from the 
values using the 6'6 ratios given in the Table. In the textbook of 

Shapiro (ref. 108, p. 1093) a table is given from which this ratio may be 
determined for flat plate turbulent boundary layers at various Mach numbers 
(0 to 10 in 0.2 increments). A formula which the present author devised which 
fitted these ratios to within 3.5% for M > 1.6 is - 

6*/6 = 0.1 + 0.1574 e-0'8M (M-~)IT + 0.63 sin - 16 

where the argument is in radians. 
6'6* 

This formula was used to provide the needed 
ratios. 
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Appendix C 

Linearized Analysis of Weak Shock Wave-Supersonic Shear Layer Interaction 

PART I - Incoming Wave 

As in the main text, the problem considered here is that of the refrac- 
tion through the boundary layer of a weak plane shock. The boundary layer 
in the interaction zone can be considered as a medium in which the fluid 
properties vary only in the vertical direction. In wave propagation problems, 
a medium in which properties vary in only one direction, whether continuously 
or discontinuously, is often called a "stratified" or "layered" medium. The 
present problem is therefore the refraction of a weak plane shock through a 
horizontally stratified medium. The stratified medium presents a much simpler 
problem than the general nonuniform medium case, but the stratified problem 
is still a difficult one and one must often be satisfied with approximate 
solutions. 

One solution technique that is used to solve the stratified problem is 
to approximate the continuously varying medium properties using a layered 
model. Here it is assumed that the medium properties in each layer are con- 
stant and that discontinuities exist in the properties at the layer boundaries. 
The propagation problem is then solved by examining the series of reflections 
and transmissions that occur as the wave reaches each of the interfaces be- 
tween the layers. The greater the accuracy demanded, the greater the number 
of subdivisions used. If it is desired, one can let the thickness of the 
layers approach zero, and in the limit obtain a differential equation describing 
some aspect of the problem. As mentioned in the main text, this was the ap- 
proach taken by a number of fluid dynamicists around 1950 to examine the weak 
shock boundary layer interaction. It is the details of this approach that 
are given in the present appendix. 

In another solution technique the layered approximation is not used and 
the properties of the medium are allowed to vary continuously. But in this 
case, restrictions are imposed on the nature of the wave and property varia- 
tions. The geometric acoustic method exemplifies this approach, and this 
method is discussed in a Appendix D. The present appendix can be considered 
as a fluid dynamicist's approach to the boundary layer interaction problem; 
the geometric acoustic approach would likely be that of the acoustician. 
In Part I of this appendix an analysis of the behavior of the strength of 
an incoming weak shock will be presented; Part II will be concerned with the 
reflected wave system. Part II also contains a discussion of an attempt to 
find in the published literature evidence of the reflected wave system. 

The following is based largely on Barry's method of solution (ref. 74). 
The incoming shock wave is assumed to be weak. The shear layer is considered 
to be composed of a number of inviscid fluid layers which are separated by 
slip planes across which some of the fluid properties may vary discontinuously. 
Within each layer the fluid properties are considered to be constant. The 
situation is depicted in figure 26. The static pressure is assumed to be 
constant across the shear layer. The refraction of an incident wave at a 
slip plane as well as the nomenclature used in the analysis are shown in 
figure 27. 

At a slip plane the incident wave splits into a reflected wave and a 
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transmitted wave. The reflected wave is shown here as an expansion wave and 
this fact is denoted by the dashed line (of course, the flow deflection angle 
also shows that the wave is an expansion wave). The change in Mach number 
across the weak incident wave is neglected. The heart of the analysis lies 
in the weak-wave assumption and the requirement that the static pressure and 
the flow deflection angle remain constant across a slip plane. 

If the incident wave is weak, linearized theory can be used. In this 
case, provided the flow is not transonic, the pressure change across the wave 
may be written as 

(Cl) 

where the subscripts u and d refer, respectively, to conditions upstream 
and downstream of the wave, 8 is the flow deflection angle, and the plus or 
minus sign is used when the incident wave is compressive or expansive, re- 
spectively. For the present, only incoming waves such as shown in figure 27 
will be considered. If 0 is taken as positive in the clockwise direction, 
equation (Cl) can be taken without the absolute value or plus or minus oper- 
ators. Defining the pressure rise coefficient, P, as 

P= 'd - 'u = & 
P 

U pU 

equation (Cl) Becomes 

P = f(M)8 (C2) 

where 
W2 

f(M) =vgy 

Because the static pressure must remain constant across a slip plane, 
pl = p2 and p4 = p3, and hence, 

P3 - P2 = P4 - Pl (C3) 

or 

P3 - P2 = P5 - Pl + P4 - P5 

With a few manipulations eq. (C3) may be written in terms of the pressure rise 
coefficient P = Ap/p as 

Pt = Pi+ Pr (Pi+ 1) (C4) 

where the subscripts i, t, and r refer to, respectively, the incident, trans- 
mitted, and reflected waves. 
(C4) reduces to 

For a weak incident wave Pi << 1, and equation 

Pt = Pi + Pr 
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Since P is a function of M and 8, the total differential dP is 

dP = ap dM + z de 
aM a9 CC61 

The partial derivatives may be obtained from equation (CZ) as 

ap 
ae = f(M) 

Substituting these equations into equation (C6) gives 

dP = 0df + fd8 (C7) 

The change in pressure rise coefficient, 6P, as the incident wave crosses the 
slip plane is P - P., and hence, from equation (C5), it is seen that 
6P=P. 
60 = or. 

As cantbe &en from figure 27, 8, = Bi + Br, and thus, similarly, 
Inasmuch as the incident wave is weak and the change in Mach number 

acrossrthe slip plane is small, the reflected wave itself is weak and there- 
fore obeys eq. (CZ). Thus P = -f(M) 8 (a negative sign is needed), and 
hence, using the preceding inErementa1 rzlations for P and 8 r r' 

6P = -f 68 (C8) 

In the limit of the change in Mach number across the slip plane approaching 
zero, eq. (C8) may be substituted into eq. (C7) giving the following differ- 
erential equation 

d6 1 -=-- 
8 2 

This equation 

df 
f 

may be integrated to give 

cc91 

where 8 and M are the free-stream boundary conditions. 
is eq. (?) of themmain text. 

Equation (C9) 
The equation describes the strength of the wave 

in terms of flow deflection angle as the wave traverses the shear layer. 

The wave strength variation in terms of pressure rise is obtained by sub- 
stituting for 8 from equation (CZ). The result is 

(ClO) 

It is easily shown that Ap possesses a minimum at M = fi. Thus if 
M, > fi, the wave strength will initially decrease as the wave enters the 
boundary layer. Later it will be shown that the reflected wave field changes 
from expansive to compressive as the wave passes into the region where the 
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Mach number is less than &. The behavior of Ap can therefore be associated 
with the nature of the reflected wave field. 

It is important to realize that in the analysis the flow Mach number has 
been that relative to the wave. If the wave is stationary in a tunnel, this 
flow Mach number is also the usual Mach number of the flow relative to the 
tunnel. If, however, the wave is moving, a situation of prime interest in 
the present report, then, of course, the value of M in equation (ClO) is not 
the conventional flow Mach number such as would be measured in a tunnel boundary 
layer. A simple transformation allows the equations to be expressed in terms 
of the tunnel-fixed coordinates. If Uf is the fluid velocity in the usual 
tunnel-fixed coordinate system, and u is the downstream velocity of the wave 
source in the fixed system, then M, &e quantity which is presently represen- 
ting the Mach number of the flow relative to the wave, is 

M= Uf - us 
a (C11) 

where a is the local speed of sound. In terms of Mach number, using the fact 
that MS = us/am, equation (Cll) may be expressed as 

a 
M = Mf - MS e 

The relative free-stream Mach number is 

MC0 = Mf - MS 
co 

(Cl21 

Substituting equations (C12) and (C13) into (ClO) yields the important result 

a r l/4 
m - 

4P= Mf -"s a 

1 

("f - MS)' - 1 
co 

AP, Mf - M S co (Mf - MS +=)' - 1 
I 

(C14) 

When the shock is stationary, M = 0, and equation (C14) reduces to a form 
similar to equation (ClO). Equ:tion (C14) is the principal result of the analy- 
sis. For the remainder of Part I of the present appendix, the relative Mach 
number M will continue to be used. Whenever it is desired to apply the 
equations in terms of the usual tunnel-fixed coordinate system, M and M, 
can be utilized using equations (C12) and (C13), respectively. 

To determine the wave strength in terms of the longitudinal velocity 
fluctuation, the relation between Au and Ap from linearized theory can be 
used, namely, 

Au 1 -= -- Al? 
U 'fM2 ' 

Substituting this equation into equation (ClO) yields 

Au uM 03 -=- 
'% %a M 
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or 

Au a 

As illustrated in figure 8, within the boundary layer, provided that 
M, > fi, there are conditions of pressure coefficient and flow deflection angle 
which match those of the incoming wave at the edge of the boundary layer. These 
matching conditions occur at the same local Mach number and hence at the same 
height in the boundary layer. It is only below this location that pressure 
fluctuation amplitudes can exceed the free-stream strengths. The value of this 
Mach number, found by setting Ap/Ap, = 1 in equation (ClO), is 

(C15) 

Some implications of this result are given in the main text. 

The linearized approach becomes increasingly inaccurate as the sonic con- 
dition is approached. In addition to this problem, the model itself becomes 
invalid at the condition'where the flow behind the incident wave is subsonic 
and no reflected shock can exist. To find where this condition occurs, oblique 
shock theory can be used. The relation between the Mach number and shock 
strength for which subsonic flow exists downstream may be derived from oblique 
shock equations contained in reference (105, eq. 157) and is 

M* = J 6PL+18P+7 
6P+7 

The simultaneous solution of this equation with the refraction shock strength 
equation (ClO), written as 

1'4 

provides the means of determining the values of P and M where the three- 
wave model breaks down. This has been done for a number of relative free-stream 
Mach numbers, M,, and a variety of initial wave strengths, Pm, and the results 
were shown in figure 19 of the main text. 

Concerning additional use of oblique theory, the deflection angle of an 
oblique shock is related to the Mach number and pressure ratio coefficient by 
(ref. 105, eq. 160) 

tan26 = - P ! 1 2 2vM2-P(y+l)-2y 

vM2-P p(Y+l)+2Y 

From this equation 

(C16) 

atan' -= 4r2P2M(P+2-M2) 
aM 

(yM2-P) [P (Y+1)+2y1 
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The oblique shock theory can be shown to be consistent with linearized theory 
by noting from (C17) that dB/dM = 0 at M = & + 2, with 8 a minimum, and as 
P + 0, M + fi, a finding consistent with linearized theory. Barry stated that 
for an incoming shock, an expansion wave will be reflected for M > m 
and a compression wave will be reflected for M < /P + 2. The earlier remarks 
on the nature of reflected waves sti 4- 1 apply if the expression M 2=p+2 
is used for the extrema instead of M - 2 (a result also shown by Henderson 
in reference go). 

As in linearized theory, oblique shock theory also indicates that there 
are two Mach numbers at which the shocks have the same pressure ratio and deflec- 
tion angle. By using (C16), one can show that 

M,'(y 

4=Pm = y M 2 

+ y p,> - PO3 (pm+2) 

m - (Y + F Pm> 

For P = 0, this equation reduces to equation (C15). The variation of 
with M for various values of P was shown in figure 9. Also shown in the 
figure ?s a cutoff curve indicatin: the conditions for which subsonic flow 
exists behind the incident wave. For very small values of Pm, this condition 
is of course quite close to M = 1. Expressions suitable for finding the flow 
deflection angle and shock strength across a shear layer based on the three- 
wave model using oblique shock theory rather than linearized theory can be 
found in Moeckel (ref. 76) and Friedman and Chou (ref. 102). 
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Part II - Reflected Wave System 

The emphasis in the preceding section was on the incoming wave, and now 
a close examination of the reflected wave field will be made. Using equation 
(Q), equation (C5), may be rewritten as 

f(Mz)'t = f(Ml>'i - f(Ml)', 

Using the fact that et = Bi + 8 , r the above equation may be written as 

f(M2) (ei + or) = f(M1) 8. - f(M1)Or 1 

or 
fW1) - f(M2) 

'r = f(M1) + f(M2) 'i 

For very small changes in Mach number across the slip plane, 

f(M1) - f(M2) Af 00 
f(M1) + f(M2) = - - 2f Of) 

and in the limit as the change in Mach number approaches zero, 

Af 00 lim -= - df(M) 
AM+O 2f 04 2f 00 

11 df(W -- 
= -2 f(M) df 

dM 

= 1 d[lnf(Wl -- 
2 dM 

dM 

Therefore, for this limiting condition, eq. (C18) becomes 

der = -$ & [In f(M)]BidM 

Substituting for f(M) and performing the differentiation gives 

de =-lM2-’ 
r ' M(M2 - 1) 

Oi dM 

(Cl81 

(Cl91 

This equation shows that at M = fi no reflected wave exists and that the sign 
of d6 changes at this value. For a compression wave entering a boundary 
layer zith a free-stream Mach number greater than fi, the reflected wave will 
initially be an expansion wave. At M = fi no reflected wave will exist and at 
Mach numbers below fi compression waves will be reflected. The situation was 
depicted in the text figure 7. Whereas 6 of the incoming wave depended upon 
only the value of the local Mach number for given initial conditions, the 
strength of the reflected wave depends both on the local Mach number and local 
variation of the Mach number in the shear layer. The reflected wave strength 
is seen to be a differential quantity. 
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The above analysis was based on Barry's work (ref. 74). Marble (ref. 75) 
carried the analysis further by using equation (C19) to determine the flow 
direction along the edge of the boundary layer due to the integrated effect 
of the reflected wave field, and this problem will be considered here. The 
wave of strength de propagates back out into the free-stream undergoing a 
refraction process s&lar to that of the incoming wave. In fact, the same 
relationships used to describe the incoming wave with an initial strength 
em can be used to describe the outgoing wave of initial strength d0 . This 
is the approach used below to estimate the flow direction along the o6ter edge 
of the boundary layer due to the reflected waves. This would be an important 
quantity, for it would describe the manner in which the free-stream would be 
disturbed by the reflected wave field. The analysis is for the two-dimensional 
case of an incoming weak plane wave, and it is of course a linearized approach 
in which the Mach number is assumed to be unchanged across the waves. 

As previously stated, any of the reflected waves, which will be called 
primary reflected waves, will go through a refraction process as it propagates 
back toward the outer edge of the boundary layer. This process itself generates 
secondary reflected waves which in turn refract and generate additional reflec- 
ted waves. Ultimately, a diffuse pattern is set up by any of the primary reflec- 
ted waves. It is thus seen that a primary reflected wave is not isolated in 
its outward progress. However, any wave which contributes to a primary reflec- 
ted wave will have undergone at least two additional reflections. Since it has 
been shown that, except near M = 1, any reflected wave is of greatly dimin- 
ished in strength (see eq. (C19), it is consistent with the present approximation 
scheme to neglect the effects of the contributor waves. Thus the reflected 
wave field can be considered to be composed only of the primary reflected waves. 

The goal here is to describe the effect on the boundary layer edge stream- 
line of the reflected wave field produced by the refraction process of the 
incoming weak shock wave. The analysis will ultimately involve an integration 
of equation ((39). To begin this process, at any location, M., 0. in equation 
(C19) can be expressed, using eq. (9), in terms of the initial coiditions at 
the edge of the boundary layer of the incoming wave as 

l/4 

e 800 

Substituting this expression for ei into (C19) gives 

der = - 
Mi2 - 2 

2Mi (Mi2 - 1) i 

Again, the subscript i here refers to the condition, i.e., the location, where 
a primary reflected wave is initiated. Using (C9) again, the value of the 
reflected wave, de, at any location (at any M) as it propagates back out 
through the shear layer can be expressed in terms of its initial strength at 
Mi as 
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Substituting for der from (CZO) gives 

de = - 
Mi2 - 2 

2Mi(M.' - 1) 
'~3 d"i 

1 
cc211 

To find the value of flow directions at the edge of the boundary layer, the 
value of M takes on the value M, in eq. (C21). The result is 

- 2 

deR6 Mi2 = - 2 Oo3 
5 (M 1 . - 1) 

dM. 1 cc=) 

where the subscript R6 has been used to indicate the value of the flow deflec- 
tion angle of the reflected wave field at the edge of the boundary layer. 
Equation (C22) is seen to be of the same form as the starting equation (C19), 
except that in place of the variable 0 the constant 0 is present. 
Equation (C22) can be directly integrateid in order to des%ibe the behavior 
0f 0 
resu1Pi.s 

as a function of the Mach number within the boundary layer. The 

Actually, the total flow direction at the outer edge of the boundary layer is 
the sum of that due to the incoming wave at the edge of the boundary layer, Ooo, 
plus the effects of the reflected wave field. Thus, 

and hence, 

(C23) 

Equation (C23) gives a relationship between the local value of Mach number M 
and the flow direction at the edge of the boundary layer which is produced as 
a result of the cumulative effects of the reflected wave field originating 
within the region between M, and M. 
in figure 28 for three values of M,. 

Values of 06/Ooo vs. M are shown 
As M decreases from its free-stream 

value, 0 initially increases (Moo > fi for the examples), meaning that the 
flow is furned toward the wall. The maximum turn toward the wall occurs in 
the region of the reflected wave field originating from the M = fi vicinity. 
This is expected because the nature of the reflected waves changes at M = &. 
As the Mach number is further decreased the turning to the wall is lessened 
due to the compressive nature of the reflected waves. Eventually the flow 
is turned away from the wall, and ultimately the results show unrealistic 
values due to the linear analysis. 

Equation (C23) does not enable a boundary layer edge streamline to be 
constructed. To do so requires a relationship between e6 and x, the down- 
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stream distance. The problem is illustrated in figure 29 where an incoming 
wave and a typical theoretical outer edge streamline (greatly exaggerated) are 
shown. As has been stated, the maximum flow angle towards the wall occurs at 
the location where a reflected wave originating from the M = & region would 
strike the edge of the boundary layer. To find this location, or the location 
of any wave striking the edge of the boundary layer, the equations describing 
the location of the incoming and each reflected waves are needed. Because 
the waves have been assumed to be very weak, all the waves can be assumed to 
propagate along the characteristics. Thus, the equation describing the char- 
acteristics 

can be used. Because it is assumed that there is no Mach number change across 
any of the waves, the Mach number is a function of y only and this greatly 
simplifies the problem. The nomenclature for the problem is also illustrated 
in the figure, where the value of x is used to locate a coordinate on the 
incoming wave, and X is used to describe the location of the intersection 
of a reflected wave originating at x, y with the edge of the boundary layer. 
It can be seen that because of the very small deflections of the outer edge 
of the boundary layer, the symmetry of the problem allows the simplification 
of X=2x tobemade. This problem will be solved for example cases of an 
incoming wave from a stationary source interacting with a "laminar" boundary 
layer and a "turbulent" boundary layer in Mach 2 and 4 tunnels. Quotation 
marks have been used here because the boundary layer Mach number profiles are 
approximated in a very crude fashion. 

The equation of the incoming characteristic can be written as 

-d(t) = K d(y/&) 

To solve the problem, the Mach number profile is needed in order to express 
M as a function of y. The simplest profile would be a linear one, and in 
fact, for laminar boundary layers the Mach number profile is approximately 
linear for stream Mach numbers up to about 4. Therefore, a profile of the 
form 

p! 
MC.2 

CC251 

was used for the laminar interaction study. Substituting equation (C25) into 
(C24) gives the differential equation 

-d(g) = + JM2 -1 dM 
co 

Integrating and using the fact that X = 2x yields 

C-6) 
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Using equations (C23) and (C26),results in the form of -Bg/eco vs X/S for 
M,= 2 and M = 4 are shown in figure 30 and will be discussed as soon as the 
turbulent re&lts are presented. The negative of the deflection angle ratio 
is plotted so that the sense of the directions shown on the figure corresponds 
to the actual physical situation for a boundary layer interaction such as 
depicted in figure 29. 

For comparison with the laminar boundary layer interaction, an approxi- 
mate "turbulent" Mach number profile was used. For this case, the following 
profile was assumed: 

Substituting this relation into equation (C24) gives the following differential 
equation: 

d(f) s-14 M 6z dM 
Mm7 

or 

X 14 -=-- M6 /M2-1 dM 
6 

MaI7 

This equation was integrated numerically, and the plotted results for 
and M 03 = 4 are shown in figure 30 along with the laminar results. 

M, = 2 

Inasmuch as M, is greater than 6 in the cases shown in the figure, 
the reflected wave field is initially an expansive one. The outer flow thus 
initially undergoes a turning toward the wall which is in addition to that 
produced by passage through the incoming shock itself. Ultimately the outer 
flow is seen to turn sharply away from the wall as 2 result of the strong reflec- 
ted compression field which originates below M = 42 near the sonic line. 
The fullness of the turbulent profile results in interactions occurring over a 
considerable longitudinal distance and the terminal compression region is more 
abrupt than in the laminar case. The laminar curves are not horizontal at the 
beginning of the interaction because of the assumed straight-line Mach number 
profile (the assumed turbulent profiles are better in this regard). The figure 
shows that the greater the free-stream Mach number the greater the turning toward 
the wall. The very rapid turn away from the wall for all conditions must be 
considered unrealistic inasmuch as this is due to the reflected compression 
field originating near the sonic line, and the theory is inappropriate for this 
transonic region. 

In an effort to determine whether some of the features predicted by the 
linearized analysis of the weak shock wave interaction process actually occur, 
a study of published schlieren photographs of shock wave-boundary layer inter- 
actions was undertaken. Schlieren photographs of such interactions are usually 
presented for the case of the horizontal knife-edge and therefore density 
gradients in the direction normal to the wall are revealed. 

It is, of course, well known that a reflected compression wave has always 
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been observed in shock wave-boundary layer interactions. Many texts begin the 
study of the interaction by presenting the inviscid (no boundary layer) case 
for which the reflected wave is shown to be necessary in order to turn the 
flow back parallel to the solid wall. From the present linearized interaction 
study, this wave could be considered to be the result of the merging of the 
compression waves generated by the refractions process near the sonic line. 
However, the theory is least appropriate for this region and therefore the 
reflected compression wave would not be the best feature to identify in 
trying to relate actual flow phenomena to that predicted by the theory. In 
the inviscid case, the reflected wave is a compression wave only, and thus 
the predicted possible expansion wave field would have to be considered a 
unique phenomenon directly associated with the outer boundary layer interaction 
refraction process. The predicted expansion region would be greatest at the 
higher Mach numbers (Moo must be greater than fi) and for thin boundary 
layers, the greatest expansion region would also be located very close to the 
expected merging compression waves. This'could present a practical problem 
in identification, for then the expansion region would be optically 
obscurred by the reflected compression waves if the shock generator was not 
strictly parallel to the schlieren beam or perhaps be obscurred by shock-side 
wall boundary layer interference. Figure 30 shows that the laminar rather 
than the turbulent layer would provide the greater opportunity to observe the 
expansion field just downstream of the incoming wave without optical inter- 
ference from the reflected compression waves. Unfortunately, the laminar 
boundary layer is generally known to separate upstream of the interaction 
"point". This results in the boundary layer first turning away from the wall, 
generating upstream compression waves, and then turning toward the wall around 
the separation region before finally turning again to become parallel to the 
wall. The latter two flow turning conditions generate expansion and compression 
waves, resnectively. Thus, expansion waves can be present, but they can be 
the result of both the flow separation process and the refraction generation 
process. The identification of the features directly corresponding to those 
predicted from the theory is thus expected to be difficult. 

Schlieren photographs in references 162 to 169 were examined. The shocks 
were generated by wedges in the free-stream, and the boundary layers were, in 
all but one case, those created by sharp flat plates also mounted in the free- 
stream. The Mach number range was 1.4 to 8. The shock strengths were stronger 
than the acoustic strength case for which the above theory was appropriate. 
It could be expected, however, that even for stronger waves a continuous 
reflected wave field would exist. 

As expected, the previously mentioned complications did present problems 
in trying to identify a reflected wave field generated in the outer regions 
of the boundary layer. Except for Pickney (ref. 166), all of the authors 
presented schematic drawings of the features seen in the original schlieren 
photographs. Except for Barry, Shapiro, and Newman (ref. 162 - the same 
Barry of the incremental Mach number analysis), none of the authors presented 
sketches showing a reflected wave field illustrating the refraction generated 
reflection feature. The authors describe the interactions as the aforementioned 
compression-expansion-recompression feature interaction. In fact, in the dis- 
cussion by Barry, et al., the generation of the expansion region is primarily 
attributed to the thickened subsonic layer near the wall which tends to present 
a constant pressure boundary condition and thus a reflected expansion wave. 
In this reference, Mach 2 schlieren photographs are presented for wedge flow 
deflection angles of lo to 6O. An expansion region appears to be present 
even for the weakest interaction. The photographs are quite small, however, 
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and essentially reliance must be placed on the author's description. In refer- 
ence 163, photos (figures 12 and 16) are shown for Mach 1.4 with 30 to 4 l/Z0 
shock generator interactions with laminar and turbulent boundary layers. For 
the laminar case, a distinct expansion fan is shown emanating from the inter- 
action, but because most of the boundary layer is at Mach numbers less than 
/2, the interaction should produce only compression reflections according to 
the theory. The expansion wave is thus the result of the thickened and probably 
separated subsonic region. 

In reference 169 Kaufman and Johnson present results from a shock wave 
laminar boundary layer interaction investigation where weak incident shocks 
were used. For M, = 8, flat plate boundary layer interactions were studied 
for incident shock deflection angles of lo, 3O, and 5'. The boundary layer at 
the interaction point was relatively thick (6 z 0.6 cm for the lowest tunnel 
pressure), and schlieren photos were presented. Although clarity is a problem, 
it appears to the present author that there was always a compression-expansion- 
compression reflected wave process, even for the lo case where it was stated 
that the boundary layer did not separate. This pattern also appears to occur 
in the interaction of the very weak shock from the flat plate's leading edge 
with the boundary layer on the flat plate shock generator. The linearized 
interaction predicts that only an expansion-compression pattern should occur, 
and the verification of the refraction features is not conclusive. 

There does not appear to be a reflected wave field definitely identifiable 
as being generated by the refraction process in the boundary layer interaction 
photographs in any of the reports studied. Rose (ref. 170), however, in re- 
viewing the schlieren photographs from one of his previous hypersonic investi- 
gations (ref. 167j, states that the refraction generated expansion region is 
evident. This phenomenon was not mentioned or schematically illustrated in the 
report of the experimental investigation or in a later note (ref. 171). In 
the later study (refs. 170, 171) a computer program employing the method of 
characteristics was used for calculating the inviscid interaction in the outer 
region of the boundary layer, and a refraction generated reflected wave field 
was predicted. This was perhaps the reason for the re-examination of the 
schlieren photographs. These photographs as they exist in the published version 
examined, do not appear to exhibit the described feature. 

In the investigation by Green (ref. 168), the interaction with a Mach 2.5 
turbulent boundary layer was studied. Unseparated interactions and ones strong 
enough to cause separation were studied. Green was aware of refraction analysis 
results and made an effort to observe in the schlieren photographs the predicted 
expansion waves from the refraction process within the boundary layer. For the 
unseparated boundary layer, no expansion waves were seen, and in the separated 
case, effects of the shock refraction were lost in the expansion fan created 
by the separated layer (the subsonic vicious part of the layer was reported 
to dominate the outgoing wave behavior). It was concluded that it was uncertain 
to what degree the refraction phenomena contributed to the overall wave pattern. 

The problem with the boundary layer in trying to identify the refraction 
features is the presence of the subsonic layer. The refraction analysis was 
for a shear layer which was entirely supersonic. Liepmann, Roshko, and Dhawan 
(ref. 163) did attempt a supersonic shear layer shock wave interaction experi- 
ment in their shock wave boundary layer interaction investigation. The purpose 
was to check the applicability of the linearization of the incremental Mach 
number profile refraction analysis (in this case, that of Marble's work, ref. 
75). The wake from a very thin flat plate (0.16 cm thick, 3.8 cm long) provided 
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the shear layer, and the shock source was from a 4.5O wedge located above the 
wake. Two schlieren photographs are presented showing shock interactions at 
distances of 3 cm and 5 cm, respectively, behind the plate's trailing edge. 
The Mach number was stated to be 1.36 for the conditions of the photographs. 
Some typical Mach number profiles across the wake are also shown. The con- 
ditions for the survey were apparently a little different from the photo con- 
ditions, for the local free-stream Mach number was about 1.44 for the survey. 
At the 3 cm location, the wake centerline Mach number was 1.25. If the same 
centerline M/M, condition holds for the M = 1.36 case, then the centerline 
Mach number at the 3 cm location would be ab%t 1.18 (and about 1.22 for the 
5 cm location). For a 4.5O wedge at M, = 1.36 the wave strength would be 
about pz'p1 = 1.25. A wave of this strength without focusing would produce 
subsonic flow downstream of the interaction for an incoming Mach number of 
1.18. Thus it may have been that subsonic flow existed downstream of the 
interaction near the wake centerline. The linearized theory would not be ade- 
quate for this region. 

A diffuse reflected compression wave field is visible in the photographs 
and it appears to originate from the up er half of the wake. 

h, 
Inasmuch as the 

free-stream Mach number is less than the refraction analysis would 
predict that a reflected compression wave field would be generated above the 
wake centerline and an expansion field below the centerline. The fact that the 
expansion field is not visible may perhaps be due to the ultimate weakening 
that this field must experience upon traversing the upper half of the shear 
layer or to a subsonic flow region around the centerline. The photographs 
thus appear to demonstrate that partial reflection from a continuous Mach 
number gradient exists and in a manner perhaps in accord with theory. The 
wake, however, appears to be turbulent (no Reynolds number information is given) 
and the conditions are therefore not strictly in agreement with a steady laminar 
shear layer implicitly assumed in the analysis. If the turbulence is taken as 
presenting an unsteady Mach number gradient, then the present technique could 
still be applied and the result would be an unsteady reflected wave field. The 
diffuse reflected wave pattern seen in the photographs does admit an unsteady- 
field interpretation and thus the basic reflected-field contention is supported. 

It should be mentioned that there exists a separate and sizable body of 
literature concerned with the problem of the interaction between turbulence and 
shock waves. The research shows that sound waves are generated as a result of 
the shock-turbulence interaction; and these researchers would quite likely 
accept the schlieren photographs as evidence supporting their theories. 

Shock-turbulence studies (e.g., refs. 152, 172 to 174) show that when 
vorticity, temperature spots, or sound waves interact with a shock, all three 
disturbance modes are generated; the shock wave couples all of the modes. While 
the methods of analysis differ from the refraction methods in the present report, 
the spirit is comparable. To investigate shock-turbulence theories, some of 
the researchers have conducted shock-turbulent wake interaction experiments. 
Some of this work will be briefly reviewed here inasmuch as any generated 
sound field will be viewed here as evidence supporting the laminar reflected 
wave field contention. Schlieren photos of shock interactions with laminar 
wakes would have been the ideal data to examine for evidence of the continuous 
reflected wave field, but no such photos were found. 

Kovasznay (ref.175 ) investigated the interaction of a shock from a loo 
wedge with the axisymmetric wake from a one-inch rod at a free-stream Mach 
number of 1.75. The object of the investigation was to compare fluctuations 

71 



in the wake before and after passage through the shock and to locate sound waves 
emanating from the interaction zone. The principal tool was the hot-wire. Un- 
like the Liepmann et al. investigation (which was published before the major 
studies of the shock-turbulence interaction were published), no reference was 
made to any of the linearized incremental Mach number analyses of the shear 
layer-shock interaction. The shock wave-turbulence interaction was considered 
likely to produce sound waves that travel outward approximately along the Mach 
lines, and these were to be detected with the hot-wire. Schlieren photographs 
were taken, though not presented, to examine the refraction of the shock wave 
through the wake. A hot-wire traverse parallel to and just outside the wake 
revealed a rather intense sound field to be present downstream of the interaction 
region. It was stated that the sound disturbances seemed to originate in a 
near-sonic region where the wake crossed the shock wave. 

At M = 1.75 a loo wdge produces a shock with a wave strength of about 
P IP = 1.65. This wave 
Mich'number of about 

strength is strong enough to be a normal shock at a 
M = 1.25. Kovasznay reported wake centerline Mach number 

measurements, and at the approximate location where the shock crossed the center- 
line the Mach number was about 1.19. It could thus perhaps be expected that 
an irregular refraction process would have to occur near the centerline. 
Moeckel (ref. 76 - see footnote "a" p. 12) discusses the possibility of sepa- 
rated flow regions in a free shear layer under these conditions with the pos- 
sibility of a lambda shock existing outside the shear layer. Henderson (refs. 
80, 81, 176) discusses the irregular nature of possible shock refractions. 
Such a situation is not in accord with the conditions for which the theories 
for the generated noise field were derived. 

In the investigation by Radcliffe (ref. 177), similar shock wave-super- 
sonic shear layer interaction experiments were conducted, and again it was 
deemed an investigation of the radiated pressure fluctuations caused by the 
interaction of turbulence with shock waves. A wake from a thin plate was used 
as the turbulence source, and a loo wedge was used as the shock generator. Two 
different Mach numbers were primarily used in the investigation; M, = 1.99 
and M, = 3.14. To sense the fluctuating acoustic pressures, a small microphone 
(.07 in dia.) was installed near the sharp leading edge of a small flat plate 
(1x1 inch) movable instrument head. Shadowgraph photographs were also taken, 
and thus shock waves could be expected to be easily located, but expansion or 
compression regions would be difficult to identify. No wake Mach number mea- 
surements were made. It was reported that for the M = 1.99 flow, a reflected 
wave was visible, but for the M = 3.14 flow, no reflected waves were seen 
(perhaps for the want of schlieren apparatus). For the high Mach number case 
it is unlikely that an irregular reflection would occur and the lack of a reflec- 
ted wave in the shadowgraph appears to confirm this. The present author only 
had a microfilm copy of the report available, and only one flow photograph, 
for M = 1.99, was successfully reproduced so that details could be seen. For 
the lower Mach number condition, the shock wave appeared to become normal to 
the flow within the wake, and the reflected wave system had the appearance 
of the so-called Mach reflection condition. For M = 1.99 and a 10' wedge, 
the shock strength is strong enough to become normal at M = 1.42. The center- 
line Mach number was estimated to be about 1.37 and thus the irregular shock 
system could be expected. For both Mach number flows, the output from the 
microphone reached a maximum when the diaphragm was in the vicinity of the 
location of a Mach line drawn from the edge of the wake. Agreement between 
the measured fluctuating pressure levels and that estimated from theory was not 
found to be good. It was also concluded that inspection of the spectra of the 
microphone responses revealed no clear indication of the source of the fluctuating 
pressures. 
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Appendix D 

Geometric Acoustic Approach to the Weak 
Shock Wave Boundary Layer Interaction 

As in the main text, the problem considered here is the refraction through 
the laminar boundary of a weak plane wave. In the interaction the boundary 
layer can be considered as a medium in which the fluid properties vary only 
in the vertical direction. Such a medium is called a stratified or layered 
medium, and owing to the fact that the earth's atmosphere and oceans can often 
be considered as stratified media, sound wave propagation in stratified media 
has been extensively studied. As Tolstoy points out in his wave propagation 
text (ref. 93, p. 87), the subject "propagation in stratified media" has, over 
the years, almost become a discipline by itself as a subdivision of wave theory. 
Geometric acoustics is part of this discipline. In sound propagation problems 
the method of geometric acoustics is frequently used, and it appeared that such 
an approach could be applied to the laminar boundary layer case and perhaps 
yield additional insight into the interaction problem. The method is a linear 
one, and the result should agree with those of the more conventional fluid 
dynamics approach in Appendix C. 

In the field of supersonic aerodynamic research, the method of geometric 
acoustics has been used most often in the study of the propagation through the 
atmosphere of the sonic boom (see, for example, refs. 39, 99, 178, 179). 
In this application the method is essentially used as a means of studying 
the propagation of weak shock waves through a nonuniform medium. In the pres- 
ent study the boundary layer noise has been likened to very weak shock waves, 
and thus it appeared that the problem of the interaction of a weak shock wave 
with the boundary layer (a nonuniform medium) could be suitably examined using 
the method of geometric acoustics. 

In geometric acoustics the signal is considered to propagate along rays. 
For the steady case the rays are geometric entities, and the concept of rays 
is probably most familar from studies of elementary optics. Classically, the 
method of geometric optics represents a specialized solution to the wave equa- 
tion. This specialized solution is for the limiting case of the wave length 
of the disturbance approaching zero (or the frequency approaching infinity - 
see, for example, refs. 84, 180). These restrictions are often stated in the 
manner that geometrical optics is appropriate for the case in which the changes 
in the properties of the medium over a wavelength are a small fraction of 
themselves. Thus, geometric optics solutions are appropriate for many prac- 
tical situations of high frequency propagation problems (a more thorough state- 
ment of the criteria is given by Kerr in ref. 181). The similarities between 
light and sound propagation have long been recognized, and the criteria for 
the use of geometric optics are similar to those used for acoustic phenomena. 
(The descriptive use of ray geometry was applied to sound nearly 100 years ago 
by Rayleigh (ref. 88), but the term geometric acoustics was coined much more 
recently; perhaps appearing first in the work of Blokhintsev (at least in the 
English translations - refs. 38, 182)). For acoustic phenomena, however, 
there is another factor which imposes a limitation on the use of geometrical 
methods. This is the requirement that the strength or amplitude of the wave 
system be small enough to be appropriate for the use of the wave equation. 

For the case of the zero wavelength limit in a nonmoving inviscid medium, 
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the wave 
tion 

IVZ 

equation, V2J1 = &- U 
a2 aI2 ' 

can be reduced to the so-called eikonal equa- 

I2 = P2 (X,Y,Z) 

where S (x,y,z) is the phase function of the wave, the eikonal function; and 
the wave surfaces are defined as surfaces of equal phase; 1-1 (x,y,z) is the 

index of refraction and is defined to be a0 
a (x,y,z) 

, where a is some wave 
0 

velocity adopted as a reference. The eikonal equation is obtained by assuming 

a solution of the form JI (x,y,z,t) = A (x,y,z)e i[koS(x,y,z)-d, where k = 
0 

w/a = 2m/x is the reference wave number, and substituting it into the wave 
0 0 

equation and then neglecting the terms involving V2A (e.g., ref. 84). The 
eikonal equation can be regarded as an infinitesimal formulation of Huygens' 
principle for wave surface construction. The solution S (x,y,z) of the 
eikonal equation can in principle be found for a given p (x,y,z) and initial 
surface S = constant. However, the point of view of geometric acoustics is 
to deal directly with the ray trajectories rather than finding them by initial- 
ly solving the eikonal equation each time for the eikonal function S (x,y,z). 
The ray paths for a stationary medium are normal to the wavefronts, and the 
equations for ray paths are derived by making use of the fact that the gradient 
of S is a vector perpendicular to S and thus in the direction of the ray. 
A resulting equation is 

where s is the arc length of the ray and 2 is the unit vector in the ray 
direction. Equation (Dl) is a differential equation from which ray trajectories 
may be obtained. Equation (Dl) can also be shown to be equivalent to Fermat's 
principle of "least time". In many practical situations, such as propagation 
through the atmosphere or ocean, the index of refraction is often a function 
of only one coordinate and the three scaler equations (Dl) can be integrated 
readily. A resulting expression in this particular instance is immediately 
recognized as the ordinary Snell's law, and, in the more general cases, the 
results are sometimes referred to as generalized Snell's laws. A more thorough 
discussion of these brief statements can be found in ref. 84. The connection 
between ray and wave optics is discussed in detail in ref. 85. 

In this very brief introduction to geometrical acoustics, the method 
has been presented as being appropriate for the case of periodic disturbances 
of very high frequency. This is an oft stated condition arising from the 
heritage of classical geometrical optics. But geometric acoustics is also 
quite appropriate for weak shock waves (acoustic discontinuities). Keller 
(ref. 86) observed that certain shock wave phenomena had often been described 
in optical terms, and he proceeded to show that weak shocks could be analyzed 
by the methods of geometric optics and stating, in fact, that the theory of 
weak shocks could be called geometrical acoustics. Heller (ref. 183) has given 
a derivation of a generalized eikonal equation for the case of a pressure dis- 
continuity propagating through an inhomogeneous moving medium. Friedlander 
(ref. 87) also developed the theory of geometric acoustics out of the need 
for the description of the propagation of sound pulses (acoustic shocks), and 
in fact, describes his book as an essay on the pulse solutions of the wave 
equation. Kline and Kay (ref. 85) begin their approach to electromagnetic 
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theory and geometrical optics by considering the propagation of discontinuities 
in the electric and magnetic field strength; the latter part of the book presents 
geometric optics from the high-frequency periodic wave viewpoint. They state 
that in acoustics, shock waves are the "geometric optics" of the ordinary 
waves. It is also mentioned that in view of well developed wave theory for 
acoustics, the introduction of geometrical acoustics might appear to be a step 
backward, comparable to abandoning Maxwell's equations in favor of geometrical 
optics. Because of the interest in weak shock waves, it was reasoned, the 
method of geometric acoustics was warranted. Thus, geometric acoustics is 
eminently suited for the study of weak shock waves (see also Kline, ref. 184). 

In the traditional sense of classical geometric optic studies, the interest 
has been primarily in the determination of the ray paths and not in the ampli- 
tude of the disturbances. The amplitude of the wave disturbances, however, 
can be found by the use of the theory. It is possible to find the wave ampli- 
tudes by an integration along the ray paths (refs. 84, 86 for example), but 
the method most often used in weak shock studies involves the use of the ray 
tube and energy considerations. A ray tube is essentially a bundle of adjacent 
rays. The ray tube is a differential area quantity similar to the stream tube 
from fluid dynamics (just as the ray is similar to the steady flow streamline). 
Because the energy propagates along the ray paths, the energy flow along a ray 
tube is constant. The convergence or divergence of adjacent rays because of 
gradients in the medium (i.e., refraction effects) cause the ray tube cross 
sectional area to decrease or increase. This results in an increase or decrease 
in the intensity of the energy flux and, as will be shown below, a corresponding 
change in the wave strength. 

In order to take advantage of the energy flow invariance along a ray tube, 
a relationship between the wave strength and energy content of a wave system 
is needed. For conditions appropriate for the use of geometric acoustics, 
the curvature of the wave fronts is so slight that locally the wave fronts 
appear planar. It is thus appropriate to consider the portion of wave front 
intersecting the differential area ray tube to be a plane wave and the rather 
simple expression for the energy density of a plane wave can be used. The acous- 
tic energy density for a plane wave is: 

y2 + u& 
2pa2 

where Au and Ap are the amplitudes of the particle velocity and pressure 
change associated with the wave, respectively. The energy density is half 
kinetic and half potential (see, for example, Chapter 5 of refs. 84 or 185). 
The total energy is therefore (Ap)2/pa2 [or am]. For the stationary 
atmosphere, the energy flow is invariant along the ray tube, and this quantity 
is equal to the energy density (ApI 2/w2, times the volume flow rate aA , 
where A is the normal cross sectional area of the ray tube. The invaritnt 
quantitynis therefore 

A, = constant 

When a nonuniform medium is moving the situation becomes more complex. In 
a moving medium the ray paths are not normal to the wave fronts and the energy 
flow is no longer invariant along the ray tubes. The lack of energy flow 

75 



invariance occurs because essentially the waves themselves do not constitute 
a conservative system; they can exchange energy with the mean flow. There is, 
however, a quantity akin to the expression in the above equation which is in- 
variant, and this was first presented by Blokhintsev. Blokhintsev (refs. 38, 
182) made a detailed study of acoustics in a nonhomogeneous moving medium. 
Using approximations consistent with a geometric acoustic approach, he derived 
an expression for a generalized eikonal equation which can be written as 

+ 
where V is the velocity vector of the moving fluid, and co is a reference sound 
speed. This expression of course reduces to the usual eikonal equation when 
V is zero. Other derivations of the generalized eikonal equation have been 
presented by Kornhauser (ref. 186) and Heller (ref. 183). By differentiating 
the equation of a moving phase surface (kos(x,y,z)-wt = const) with respect to 
time and using eq. (D2),Blokhintsev further showed that the phase velocity of 
the wave equaled the sum of local velocity of sound and the component of the 
medium velocity in the direction of the normal to the wave front. That is 

C =a+V =a+$ 4 n n 

where c is the unit normal to the wave front (surface of constant phase). 
The phase velocity has been designated by c because it will shortly be shown 
that this quantity is the projection of the pay velocity, c, in the direction 
of the normal to the wave front. Blokhintsev was further able to show that 
the ray velocity, or the velocity of the energy flow (often referred to as the 
group velocity), is the vector sum of the local sound speed and the medium 
velocity. That is, 

It is evident that c = 6.: and for a moving medium the ray direction $s not 
in the direction of &e wave AOrmal. 
is illustrated in figure 10. 

The relationship between cn and c 

Historically, equations (D3) and (D4) have been in use since the early 
part of this century for ray tracing problems concerned with atmospheric sound 
propagation, but they were the basic assumptions for the studies rather than 
derived results. For example, Milne (ref. 187) used equation (D4) as a basic 
principle for the determination of sound rays. A more recent treatment of ray 
tracing for the propagation of sound in a moving medium have been presented by 
Groves (ref. 98), Thompson (ref. 188), Engelke (ref. 189), and Ugi&ius 
(ref. lgoj (and see the references contained in these). 

As indicated earlier, the energy invariant along the ray tube for a 
stationary medium is not appropriate for a moving medium. Blokhintsev derived 
an acoustic energy transport equation suitable for the geometric acoustic 
applications as 

where E can be written as 

n 

76 



For the steady case, ?*Ez = 0 (a continuity equation for Ez), and thus for a 
ray tube of cross sectional area A n 

EIZIA, = constant 

or 

UP) 2 

Pa3 
cn [Z-X] = constant 036) 

-f 
where A is the area vector of the ray tube area normal to the rays. The ex- 
pression in equation (D6) is similar to the earlier discussed energ invariant 
quantity for a stationary ze2ium, and it is an energy density (AP) 1 cn/pa3 
times a volume flow rate c*A . Hayes refers to the expression in (D6) 
as the Blokhintsev invariant. Equation (D5) and expressions equivalent to (D6) 
have also been derived by Ryshov and Shefter (ref. 191) in a very different 
manner than that of Blokhintsev (in a manner perhaps more akin to an aerodynam- 
icist's approach). Ribner (ref. 192) expressed concern over the lack of 
higher-order terms in the energy flow expression, but advocated its use after 
he applied the Blokhintsev expression to a particular problem for which he 
had previously worked out the energy flow density and found agreement. A 
brief outline of some of Blokhintsev's results is presented by Ingard (ref. 
193). Blokhintsev's results have been generalized by Bretherton and Garrett 
(ref. 194) to include the case of wave trains propagating in slowly time varying 
media. For the steady flow case an equation similar to (D5) was developed 
with the E replaced by E'/w*, where E' and w* represent the energy 
density and frequency relative to a frame of reference in which the mean flow 
is locally at rest. The E'/w' ratio was called the wave action. The wave 
action concept has been discussed by Lighthill (refs. 94, 195). Candel (refs. 
196, 197), discusses and uses other forms of acoustic energy in aeroacoustic 
problems. 

The problem considered in the present analysis is the interaction of a plane 
acoustic-strength shock with the laminar boundary layer. The source of the 
wave is assumed to be far enough away so that the plane wave assumption is 
locally valid. To apply the method of geometric acoustics a coordinate system 
must be established. A convenient and natural way of doing this is to select 
a system which is fixed with respect to the fluid which moves immediately 
adjacent to the shock source. In the present noise model this fluid is assumed 
to be the tunnel free-stream, although in fact, the sources are inside the tunnel 
nozzle turbulent boundary layer. With this reference system the source appears 
to move supersonically through a uniform and stationary medium in the direction 
of the nozzle throat. This situation provides straightforward initial conditions 
for the wave and rays. In the stationary uniform medium the ray paths are 
parallel and in the direction of the wave normal, and the initial angles are 
easily related to the source relative Mach number. In this coordinate system 
the laminar boundary layer presents steady but nonuniform wind and temperature 
conditions to the locally plane wave. The situation was depicted earlier in 
figure 11. The problem is now very much like the sonic boom refraction problem. 
Hayes, Haefeli, and Kulsrud (ref. 39) have presented a study of the case of the 
sonic boom propagating through a horizontally stratified atmosphere with wind 
conditions allowed, and their study is very suitable for the present problem. 
The present approach was guided by their report. A brief paper presenting the 
highlights of their analysis may be found in refs. 198 and 199, and an even 
shorter account is outlined in ref. 20C. (In ref. 198 it appears that 8 was 
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inadvertently defined to be the angle from the horizon to the ray, whereas it'< 
should have been from the horizon to the normal to the wave front; the ray 
direction and wave normal direction no longer coincide when wind conditions 
are nresent). 

The Blokhintsev invariant, quantity (D6), will be used to determine the 
behavior of the strength of the weak incoming wave as it propagates through 
the laminar boundary layer. The quantity actually sought is Ap/ApoJ, and 
thus only ratios of various quantities will be needed. Specifically, using 
the invariant, the pressure rise ratio is easily seen to be 

(D7) 

This equation may be simplified immediately by using the fact that a2 = y RT. 
The first fraction under the radical sign may thus be written as 

03) 

where R is the gas constant. But, by the ideal gas law, p = pRT, and since 
the static pressure is constant, equation (D8) becomes simply 

pa3 a -= - 
P,am3 am 

Thus, equation (D7) reduces to 

-+ + 
The quantities a, cn, and c *A must be evaluated at points along the ray path. 

The quantity cn /cn in equation (D9) may be expressed in terms of the wave 
angles by the use of %ell's law for a moving medium. For a local stream 
velocity, V, this law may be written as 

const = a set $J + V = a+ii* v'=cn 
cos $I cos @ CD101 

where it is assumed that the horizontal component of the wave velocity and the 
flow velocity are in the same direction (i.e., sound is traveling with the wind). 
Thus, 

C 
% cos 0, 

-= ___ 
C n cos $ 

and equation (D9) becomes 

78 



The z*x terms in equation (Dll) can easily be expressed in terms of the fluid 
variables and the wave angle. 1 and z are collinear and therefore, 

:=d = ]:I 1x1 = c A 

where A is the magnitude of the cross sectional area of the ray tube. 
Referring to figure 10 of the text again, by the use of the law of cosines, 
C may be expressed as 

c= a2 + V2 + 2aV cos 9 

or 

c=a 1 + M2 + 2M cos 4 

Outside the boundary layer, c = a,, and equation (Dll) may finally be written 
as 

~0s 
J 

+a, A, Lg= -- 1 
co cos $ A 

/1+ML+2M cos $ 
CD121 

Equation (D12) will now be applied specifically to the problem at hand. To do 
this, additional details and nomenclature of the coordinate system must be es- 
tablished. 

As previously stated, the coordinate system is fixed relative to the 
free-stream. The situation is depicted in figure 11 of the main text where it 
is seen that the noise source is moving in the negative direction with speed 
lusrl - The subscript s refers to the wave source, and the subscript r in- 
dicates quantities referenced to the coordinate system attached to the free- 
stream (the relative system). An absence of the r subscript denotes veloc- 
ities as determined in the usual tunnel stationary coordinate system. The 
boundary layer is also moving in the negative direction with speed Iu,I at the 
wall. The velocity of the fluid in the present coordinate system is determined 
from 

U,(Y) = u(y) - u, 

and the wave source has a velocity given by 

U sr =u -urn S 

With the coordinate system and nomenclature now established, each of the three 
ratios in equation (D12) will next be evaluated individually. The quantity 
cos (pa/cos $ will be attacked first. 

In the new notation, Snell's law becomes 

a 
zigI-- = const r (DI5) 

where, since the wave velocity (actually, the horizontal component of it) and 
the flow velocity are in the same direction, a negative sign is needed because 
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u , as seen from equation (D7), is a negative quantity. The value of the con- 
slant is easily established using the free-stream conditions. In the free- 
stream, u r 

= 0, and equation (D15) becomes 
ace 

constant = ~ 
cos e, 

(D16) 

In the free-stream the wave angle is just the Mach angle, and hence, with p 
representing the wave angle, 

1 =- sinu, -M 
sr 

(D17) 

Again, the negative gign is needed because Msr is a negative quantity. There- 
fore, since 9, = 90 - u,, in terms of $,, equation (D17) becomes, 

cos f$ 1 = - co 
- Msr 

(D18) 

and substituting into eq. (D16) gives 

constant = - aoo M sr 
E-U 

sr 

Snell's law may then be written as: 

a ---u c-u 
cos $ r sr 

Solving for cos + gives 

cos $ = u _" u 
r sr 

1 
=yM--L 

a 

(D19) 

The quantity Mr - Msr a$ will show up frequently in the remaining work, and 
it is important to understand the meaning of this term. Dividing equations 
(D13) and (D14) by a and am, respectively, yields 

and 

M = Ma - M, 021) 
sr 

Consequently, 
a act3 

Mr - Msr 5 = M - MS a (D22) 

or 
ace u-u S 

Mr - Msr a = ~ a 
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This result shows that M - M a /a is just the local Mach number of the fluid 
relative to the wave. Inrview%f This fact, equation (D19) shows that the 
wave is inclined at the angle which is just the Mach angle corresponding to 
the local relative Mach number condition. This is what one would expect, and 
thus Snell's law conforms with one's understanding of basic facts from elemen- 
tary gas dynamics texts. Note that if the source is not moving, equations 
(D22) and (D19) reduce to the familiar result that the Mach angle u is given 
by sin 1-1 = cos $ = l/M. The desired ratio cos $m/cos $, may finally be 
expressed as, using equations (D18) and (D19), 

CD231 

a 
Because the quantity Mr - Msr T will show up so frequently, it is convenient 
in the algebraic manipulations to represent it by a single symbol, say B. 
Equation (23) then becomes 

cos e, B =- 
cos + - Msr 
The third ratio in equation (D12) will next 

skipping the second one, Am/A>. With respect to 
the ratio is 

be evaluated (temporarily 
the relative coordinate system, 

1 1 = 
J 1 + M2 + 2 M cos 4 'l+M2-2Mrcos+ r 

Substituting for the cos $ from (D24) and (D18) gives 

1 

Jl + Mr2 - 2 Mr cos C$ 
r r 

ON) 

W.5) 

The final ratio to be evaluated in equation (D12) is A&l. This quantity 
is evaluated with the aid of figure 31. In the two dimensional interactions 
considered, the horizontal distance between two rays will remain constant 
due to uniform free-stream flow and the assumption of a parallel flow in the 
boundary layer. Thus if two rays have an initial separation distance of dx, 
as seen in the figure, the cross sectional mean ratio is simply 

Acn sin y, 
-= 
A sin y 

where y is the angle of the ray from the horizontal. Inasmuch as 
Y, = +,s the only unknown quantity is sin y. The sin y may actually be de- 
termined in terms of a, c, u , and 8 by using trigonometric identities and 
relationships involved in thertriangle of figure lo. However, in figure 31 
it is also seen that tan y = dy/dx, and hence 

sin y = dy 
J(dx)2 + (dy)2 

sin y = 
5 + (+$2 
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The area ratio may therefore be written as 

W6) 

The area ratio has now been given in terms of the slope of the ray path, dy/dx. 
If an expression for dy/dx can be obtained, then one also has the first-order 
differential equation for the ray path! This is strong inducement, indeed, 
to evaluate the area ratio by the use of equation (D26). Inasmuch as the dif- 
ferential equation can be derived rather quickly and will actually be used 
later (in Appendix G), this will be done now. Once the differential equation 
is available, the evaluation of equation (D26) will be quite simple. 

To derive the differential equation an incremental velocity profile as 
shown in figure 32 is used. The ray path and coordinate system are also shown 
in the figure. Inside each Ay interval the fluid properties are assumed con- 
stant and the ray path will thus be straight. The problem is to calculate the 
(x,/y.) coordinates of the path at the boundaries of each of the zones. The 
de:ai%s of the path through a zone are shown in figure 33. The geometry shown 
is appropriate for Snell's law for a moving medium, and the figure is similar 
to figure 10. The Ax.16 is the specific quantity desired, where 6 is the 
boundary layer thickneis, and this is determined as follows. From the geometry, 
assuming constant thickness Ay intervals, 

Ayl6 tan yi = - Axi/ 

Also from the geometry 

a. 1 sin Qi 
tan yi = _ u ri + ai cos Qi 

(D27) 

(D28) 

where a. and u 
in the ith zone. 

ri are, respectively, the sound speed and relative velocity 
A negative sign is again needed in front of u ., for in the 

configuration shown, u . is a negative quantity. 
into (D28) and droppiniithe i's and simplifying, 

Substituting g$uation (D27) 
gives 

Ax AJ - ur + a cos$ 
-= 
6 6 a sin@ 

or 

Ax -BMr+l 

Y=J$+l 

Taking the limit as the Ay increments approach zero gives the desired ray 
path differential equation 

dx -BMr+l 
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Kornhauser (ref. 186) derived the ray path differential equation (his eq. 36) 
in a form which can be shown to reduce to equation (D29). 

A!Y 
I 

Returning to the evaluation of Am/A via equation (D26), the value of 

dx m 
is still needed. Outside the boundary layer Mr = 0 and B = - Msr 

. 
Hence, 

CD301 

Substituting equations (D29) and (D30) into (D26) yields, after simplification, 

@'31) 

The three ratios needed to evaluate Ap/Apco in equation (D12) have now 
been formulated. Substituting equations (D23), (D25) and (D31) into equation 
(D12) results in 

! I 

Msr2 - 1 114 

B2 - 1 

or, replacing B, 
a 

- 
AtI= Mr - Msr + 

! 

Msr2 - 1 

APCU - Msr (Mr - Msr a_/a)2-l 

CD=) 

In terms of the usual fixed coordinate system, equation (D32) may be written, 
with the use of equations (D20) and (D21), as 

(MW-~s)2 -1 

I 

114 

2 
CM - MS am/a) - 1 

CD331 

The final result, equation (D33), agrees precisely with the result from 
the linearized fluid dynamics approach, Appendix C equation (C14). The two 
methods of approach utilize very different models of the interaction process, 
but while giving the same equation describing the strength of the wave, each 
seems to have a different phenomenon which it "explains" better. The caustic 
is nicely explained in the geometric acoustic approach as the convergence 
of the ray tube and consequent increase in strength of the wave amplitude. 
The phenomenon of the decrease and subsequent increase in wave strength as it 
propagates through a region where the magnitude of the relative Mach number 
decreases from greater than to less than the fi is nicely explained in the 
fluid dynamic approach by the fact that the continuously reflected wave field 
changes its nature from an expansion to a compression field. The geometric 
acoustic approach is silent on the matter of continuous partial reflections. 
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Appendix E 

Thickness of Shocks 

The problem of the flow through a normal shock is one of the few cases 
where the full compressible Navier-Stokes equations can be solved in a direct 
fashion. With some special assumptions concerning the properties of the gas, 
the solution for the velocity distribution through the shock is obtained in 
the form of a simple integral which can be evaluated numerically. For a 
weak shock the solution can even be expressed in the form of an algebraic 
formula. These results will be derived herein. G. I. Taylor (ref. 201) gave 
a solution for weak shocks in 1910, and the problem is discussed in various 
degrees in a number of textbooks. The approach followed here resembles that 
of Morduchow & Libby (ref. 202) and White (ref. 203). 

It is assumed in the analysis that the problem is a one-dimensional one 
and hence all variables are a function of x only. It is further assumed 
that the flow is adiabatic and that there are no body forces. In this case 
the continuity, momentum, and energy equations are, respectively, 

$ CPU> = 0 

du 
P" dx = - dx * + $ [2p + A) 21 

dh *+& (k$) + (2~ + A) (2) 
2 

PU dx = u dx 

(El) 

W) 

where X is the second coefficient of viscosity. The inviscid theory holds 
far upstream and downstream, and the normal shock equations may thus be used 
to relate these two uniform boundary regions. 

The shock problem is seen to be one in which the second coefficient of 
viscosity is present. Inasmuch as X is not present in the boundary layer 
equations and does not occur in incompressible flow problems, this aspect of 
the problem is rather unusual in viscous flow problems. In the present analysis 
Stokes' hypothesis will be invoked and X given the value of -2/3~. This is 
equivalent to assuming that the coefficient of bulk viscosity, h + 2131-1, is 
zero. This condition is assumed to occur in the kinetic theory of gases 
for monatomic gases and may not be appropriate for air, but most authors 
have implicitly made the assumption in the shock problem. In view of the 
present purpose, Stokes' hypothesis is considered acceptable, especially since 
little is known about how X behaves as a function of pressure and temperature. 

Integrating the continuity equation gives 

pu = const. = piui = ofuf (E3) 

where the subscripts i and f refer to the initial and final conditions, respec- 
tively. Substituting this result into the momentum equation and using this 
equation to eliminate dp/dx from the energy equation gives 

d du du 2 
[udx(l++Lqg’ 1 - piui u 2 + $ (kg) 

= $ $ (u p 2) - piuiu 2 + $ (k g) 
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Integrating yields 
2 

h+F- $--(kg-+.$$= const 
ii 

(E4) 

Further, assuming the gas to be ideal allows the use of the relation dh = cpdT, 
where h is the enthalpy and c the specific heat at constant pressure, 
and from the definition of the P?andtl number, 
be written as 

Pr = 1-1 cp/k, equation (E4) may 

const 

Dictated by the 314 factor in the equation, 
assumed to be 3/4, which also happens to be 
the equation becomes 

the Prandtl number of the gas is 
a reasonable value for air, and 

const 

This equation may be separated and integrated, and the solution which does not 
diverge at infinity is 

2 
h + p = const 

or 
2 2 U. 

cpT+~=const=cT.+-$- 
Pi (E5) 

Using the fact that for an ideal gas c = yR/(y - 1). Equation (E5) may be 
expressed as P 

2 

RT=+s Ti+$-$) ml 

The momentum equation may be directly integrated to give 

Pi”iu + P - 4 1-I ~ = piuiA = P + p.u 
2 

i ii (E7) 

where A is an integration constant. Using the continuity equation (E3), the 
ideal gas law may be written in the form 

Pi”i 
p=- RT U 

and equation (E7) may then be written as 

u2+RT=k I.lu 
3 Pi”i 

e + E (RT~ + ui2) 
1 

Substituting equation (E6) into (E8) gives, after some manipulation and letting 
v = Ihi’ 

4L vdvJs+ti v2-v - - 3 piui dx 2y 2-y 2 (V 1) 
U. 1 

WJ) 
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But 

RT. p 
1- i 1 --=- 

2 2 
U. 1 piui2 YM i 

and equation (E9) may be written in the form 

4 1-I -- 
3 Pi”i 

Using the normal shock relation 

Uf -=v = y-l+ 2 
U. f 1 v+l Wl)Mi2 

equation (El) may be written as 

4 1-1 -- 
3 p.u 1 i 

v c = e [(V-l) (v-vf) ] dx 

or 

'i"idx = * (lF;tyV-V f ) 

Dividing through by ?J, and integrating gives 

Rex = -8y 
3(y+l) 

Using a power law 

T 
r i 

=1+Y$ 

;/vi VdV 
(l-v)(v-vf) + conSt 

(El01 

(Eli) 

(E12) 

for viscosity, v/pi = (T/Ti)n, and the fact that 

Mi (lLV2) (E13) 

equation (E12) may finally be written as 
y-l2 

Rex = IQ- [1+ 2 
3(y+l) 

Mi (lvv2)ln ' dV + const 

(1-V) w-v, > 
(E14) 

Equation (E14) is the desired result and expresses the velocity variation through 
the shock as a function of the distance Reynolds number evaluated using up- 
stream gas properties. Morduchow & Libbey (ref. 202) have used n = 0.768 
for air, and White (ref. 203) has used the value of 213. Again, equation (E14) 
is appropriate for an ideal gas with Pr = 3/4 and zero bulk viscosity. 

Once the velocity distribution is known the temperature distribution may 
be obtained from equation (E13). Other quantities may be obtained from the 
relations below. 
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p = f% = + [l + FMi2 (1-V2)] 
'i ii 

= v[l + 9 Mi2(1-V2),-1'2 

s-s. 1 -= 
C 

Ln {[I + y Mi2(l-V2) lVyB1~ 
V 

where s is the entropy and cv the constant volume specific heat. 

The primary interest in the present case is in weak shocks. For weak 
shocks the temperature would not vary much through the shock and hence the 
viscosity may be assumed to be constant. With u=~J-. in equation (E12), 
or n=O in equation (E14), the integral may be evaluated analytically to 
give the result 

Rex = 8y 
3(y+l) (l-vf) Ln 

1-v 

(v-vf)vf 
+ const (E15) 

Equation (E15) expresses the velocity distribution through the shock in terms 
of a relatively simple algebraic formula. 

In 1910 Taylor (ref. 201) obtained a weak-shock solution which differs 
slightly from equation (E15). He presented additional details of his solution 
technique in a later article (ref. 104), and this solution is presented in 
greater detail in the textbook of Curle & Davies (ref. 21 '). Taylor's solution 
will be derived here because the solution is a good one. 

Taylor's solution can be obtained as follows. The continuity and momentum 
equations, equations (El) and (E2), may be directly integrated, and this has 
been done in equations (E3) and (E7). The energy equation may also be directly 
integrated if it is written in the form 

Pu$ (h +$) =& (kg) +$ $ +$) 

Integrating and using the integrated continuity equation yields 

- $ lJu 2 - dx kdT= piui B 

where B is a constant of integration. Using the ideal gas law and relation 
for c 
expres ed Ez' 

h may be replaced by ypu/ (piui(y-1) ), and the energy equation may be 
as 

87 



L 
pu + PiUiF - $ du k 

'u dx - Rpiui 
Lk!LpuB 

dx ii (El61 

A differential equation for u may now be obtained by eliminating p from 
equations (E7) and (E16). The result is 

-k 
Rpiui 

Au + B] 017) 

At x=+m the gradients du/dx vanish. Thus, ui and u f must be the roots of 

Au+B=O 

Therefore, there is a constant, C, such that 

Au + B = C(u-ui)(u-uf) 

Hence 

and equation (E17) may now be written as 

k -- 
Rpiui 

= pi"i 
- (% 2 Y-l 

(u-u > (u-u > i f (E18) 

The solution obtained by Taylor is based on neglecting the first term and 
assuming the coefficient of du/dx is constant. The justification for ne- 
glecting the first term was based on order of magnitude arguments. Thompson 
(ref. 205), using some results from the kinetic theory of gases, shows that 
the ratio of the first two terms in equation (E18) is of the order of the 
ratio of the molecular mean free path to the shock thickness, a quantity 
which is small for weak shocks. 
first term yields 

Dividing equation by ui2 and neglecting the 

1) Wf > (El91 

Treating the coefficient of dV/dx as a constant by taking V=l, equation 
(E19) becomes 

($ !& + i F) $ = - !p (Is) (1-V) (&Vf) 

Dividing through by pi, integrating, and simplifying gives 
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With a Prandtl number of 314, the result simplifies to 

Rex = 8~ 
3(y+l)(l-vf) En G,) 

With this formula Re = 0 when the velocity is the mean of the upstream and 
downstream velocitiesx(and hence x=0 corresponds to the average velocity location). 

Comparing equation (E20) with the result given by equation (E15) shows 
that Taylor's solution is similar but slightly simpler, and that Taylor's 
solution approaches (E15) as V +l. 
might appear that Taylor's resu f 

In view of the assumptions involved it 
t would be the poorer of the two, but such is 

not the case. This is illustrated in figure 34, where, for M. = 1.70, the 
computed shock velocity distributions from the two approximatfon formulas, 
(E15) and (E20), and the numerical integration of (E14) with n = 0.76 are 
compared. For M. = 1.70, v 
shock Mach numberiwould appezr 

= 0.455 and 1 - V is certainly not <Cl. This 
to be a case whege the shock is far too strong 

for the weak-shock assumptions in the Taylor solution. But the figure shows 
that the Taylor solution is closer to the "exact" numerical result than formula 
(E15), and, in fact, that the Taylor solution gives a surprisingly good ap- 
proximation to the correct solution. For lower shock Mach numbers the ap- 
proximation formulas of course become more accurate. The conclusion here is 
that Taylor's solution, which is the most attractive because of its simplicity, 
is quite appropriate for use in the present work because of the weak shocks 
which are considered. 

The problem of the shock thickness can now be addressed. As in the case 
of the thickness of the boundary layer, the thickness of the shock involves an 
arbitrary definition of the "edge" of the nonuniform region. When considering 
the thickness based on velocity, the thickness of the shock is taken as the 
distance over which the velocity change is some fraction of the total change 
in velocity through the shock. In this report, the upstream and downstream 
edges of the shock will be taken such that they are at equal velocity incre- 
ments from the mean of the initial and final velocity states. Using these 
"symmetrical" edge conditions (the velocity profile itself has no symmetry 
property) and the Taylor weak-shock velocity solution, the expression for the 
shock thickness Reynolds number will be derived. The derivation given below 
will be kept general enough so that any fraction of the total velocity change 
may be used to define the shock thickness. 

The shock profile and thickness-defining conditions are illustrated in 
figure 35. Av = l-v 

i 
is the total change in velocity across the nonuniform 

region and rAV is t e fraction of this change used to define the shock thick- 
ness (e.g., r = 0.99). A = x2-x1 is the shock thickness, and V and V 
are, respectively, the upstream and downstream velocity condition; at the 5 efined 
edge of the shock region. Using equation (E20), the Reynolds number based on 
the shock thickness is 

ReA = Re -Re = Y 
x2 x1 3(Y+L(l-vf) 

l-V2 l-V1 
[an (g > - En C-1 1 

2 f lf 
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Since Vave 
1 

equals (1 + Vf)/2 as well as (Vl + V2)/2, we have that 
- v1 = v2 - Vf. Hence, equation (E20) may be written as 

ReA = 8y 
3(y+l)( l-V,) Rn 0321) 

It is easy to show that (l-V2)/(1-Vl) = (l+r)/(l-r), and therefore equation 
(E21) SimplifieS t0 

ReA = 8y 2 
3(y+l) l-vf 

!Ln(l+r, 
l-r (E22) 

Furthermore, using equation (E15) to express 
vf 

as a function of incoming Mach 
number, equation (E22) may be written entirely in terms of initial conditions 
as 7 

8J MiL ReA = 3 
Mi2 - 1 

(E23) 

Equation (E23) is the principal result of this appendix and is used in the main 
text of the report. For r = 0.995. and y = 1.4, the result is 

ReA = 22.36 
Mi2 

Mi2-1 

It may be noted that if the n = 0 solution, expression (E15), is used 
to determine the shock thickness, it will be found that 

ReA Taylor = 2 Y+l 
ke 

- = 
An=0 l+vf 

y + l/M 
2 

i 

As a final result, the shock thickness Reynolds number will be expressed 
in terms of the shock pressures. Using 

W-4. 
2 

pf - (Y-1) 

c= ;+1 

and Ap = pf - pi, one finds that 

a 'i Y+l 
DC. = Rn fl+r, 
I\= 

A 3 pf -- '1-r' 
-- 1 
'i 
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and 

ReA = 
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Appendix F 

Estimates of Radius of Curvature 
at the Caustic of Incoming Boundary 

Layer Noise Ray Paths 

For the two-dimensional noise-laminar layer interaction case, a caustic 
occurs. Formulas obtained from sonic boom work indicate that the maximum 
amount of focusing of a weak shock at a caustic depends on the radius of 
curvature of the shock rays near the caustic. Therefore, to estimate the 
amount of focusing in the noise-laminar layer interactions by the use of these 
formulas, the radius of curvature of the ray paths at the caustic inside the 
boundary layer must be known. In the present appendix, two procedures for 
obtaining this radius are developed, and the procedures are applied to the 
interactions occurring in Mach 4 and Mach 8 tunnels. In these example cases 
the laminar velocity and temperature profiles are crudely approximated piecewise 
by polynomials, and the calculations cover a range of source convection velocity 
ratios, n = u 1~~. 

S 

In the first procedure, the radius of curvature at the caustic is found 
directly by use of the formula from calculus for the radius of c rvature of a 
plane curve. This procedure essentially involves determining Y d y/dx2 of the 
ray path and evaluating this quantity at the caustic. Inasmuch as an expression 
for dy/dx is available from Appendix D, 'only a single differentiation is 
required. The necessary differentiation is straightforward in the case of a 
linear velocity profile, but becomes more tedius for the outer region of the 
boundary layer where the profile is curved. For this situation a second pro- 
cedure is'developed (actually, plain curiosity provided the real motivation 
here). In the second procedure, the ray path differential equation is inte- 
grated numerically to provide the coordinates of the ray path. The radius of 
curvature at the caustic is then determined by least-squares fitting a parabola 
through some of the points near the caustic and then applying the radius of 
curvature formula to the parabola at its vertex. The vertex is assumed to be 
the location of the caustic. Specific details and results are given below. 

In Appendix D, equation (D29), the differential equation of the ray path 
was given as a 

4Y= 
J(Mr-Msram/d2 - 1 

dx - Mr(Mr-MsraoJ/a) + 1 (Fl) 

where the subscript r indicates that the quantities are relative to a co- 
ordinate system which is attached to the tunnel free-stream with positive x 
in the direction of the tunnel exit. The magnitude of M is the relative 
Mach number of the shock source. am/a is the ratio of t% speed of sound 
outside the boundary layer to the local value. Equation (Fl) is more useful 
if expressed in terms which are referred to the usual tunnel fixed coordinate 
system, and this is easily done using equations (D20) and (D22) of Appendix 
D, namely, 

Mr 
CM- M, acola 

MK - Msr am/a = M - MS am/a 
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With these substitutions, equation (Fl) becomes 

a _ fWMsaa/a)2 - 1 
dx - (M-am/a - M)(M-Msa,/a) + 1 (F3) 

Furthermore, because laminar velocity and temperature profile information will 
ultimately be used, equation (F3) is even more useful if expressed in terms 
of velocity ratios. With n defined by 

equation (F3) may be expressed as 

(u/urn-q> 2 2 2 
iY= 

M, (am/a) - 1 

dx 
(l-u/u~)(u/u,-r-d M,2(am/a)2 + 1 

Using the fact that 

(a,/a)2 = To3/T 

the final result is 

2 
L!Y= 

(u/urn-n) Mm 2 Tea/T - 1 

dx 
(l-u/urn) (u/urn-n> Mm 

2 T,/T + 1 

(F4) 

Equation (F5) is a first-order differential equation describing the ray path 
through a boundary layer in terms of the tunnel Mach number, the source convec- 
tion velocity ratio, and the velocity and temperature profile parameters 
u/u and T /T. It can be integrated to provide the ray path coordinates, OK 
as Gill be shown next, it can be differentiated to provide the radius of cur- 
vature information. 

It is known from calculus that the radius of curvature of a plane curve 
is given by the formula 

2 312 
r = [l+(dy/W 1 

1 d2y/dx2 1 

At the caustic the ray path is horizontal, so dy/dx = 0, and hence, 

1 r = 
C 

[ d2y/dx2 1 C 

where the subscript c indicates that a quantity is evaluated at the caustic. 
Now 

zY= 1 dn(y/6) 
dx" 6"-l d(x/6)n 
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and thus, 

r 
C- -- 

6 ,d2Y:dX2,c 

where 

06) 

Y = y/d 

x = xl8 

Inasmuch as the ray path is smoothly concave upwards, the second derivative is 
positive and thus the absolute value symbol is not necessary here. 

The location of the caustic is determined from the condition that the 
ray path is horizontal there. This implies, from equation (F4), that at 
the caustic 

b/u, - r112 Mm2 Tm/T - 1 = 0 (F7) 

With u/uo3 and Too/T expressed as a function of Y, equation (F7) may be 
solved for Y . It may be noted that equation (F7) is consistent with the fact 
that the horiiontal speed of the wave relative to the fluid is sonic at the 
caustic. This is so because equation (F7), which stems from equation (Fl), 
expresses the fact that at the caustic Mr-MSram/a = 1. From equation (F2) 
Mr-Msraa/a = (u-us)/a, and hence at the caustic u-us = a as asserted. 

To determine the radius of curvature at the caustic, equation (F6) in- 
dicates that the problem is reduced to that of differentiating equation (F5) 
with respect to X, inasmuch as dy/dx =' dY/dX. Equation (F5) is of the form 
of a fraction dY/dX = N/D, where N and D are the numerator and denominator 
respectively. Thus, 

d2Y DN' - ND' -= 
dX2 D2 

At the caustic N = 0, and therefore 

d2Y N: -= - 
dx2 Dc 

hence, 

r 
c= DC 
6 3- 

C 
(F8) 

The problem is thus seen to involve only differentiation of the numerator of 
equation (F5). 

With 

P= f, 
co 

U=" 
cm 
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and S and Q defined as the functional coefficients of Y' in, respectively, 

u' = SY' 
P' = QY’ 

N' may be written as 

N' = McQ2 [2P(U - n)s - (U - M2QlY' 

2P2N 

At the caustic N' is seen to be of the form O/O and L'Hospital's rule must be 
used. This gives 

- 0)s - (U - rd2QlY" 
N' = lim 

M,2Y'(...)t Mm2[2P(U 

C 
YfyC 

2P2N' + 4 QPNY' 

which reduces to 

N; = 
Ma2 12Pc0J C - rl>s C - (U - n)2Qc]Y" 

C C 

2Pc2Nc 
(-1 

Again, since 
(F9) becomes 

Y' = N/D, at the caustic Yc"= N&s and therefore, equation 

N’ = 
Mm2 WC (UC -VI s C - (UC - d2Qcl 

C 2Pc2Dc 

Substituting back into equation (F8), the radius of curvature at the caustic is 
therefore 

K 2P 2D 2 
c c -= 

c 
Mm2 t2PcOJ C - nl>s C - (UC - d2Qc1 

At the caustic, UC - c1 is just ficlM,, as may be seen from equation (F7), and 
DC is 

M 
DC = " (1-U) 

JPC 

The final result is thus 

r 
cc 

2M,2(1-D)2 

6 
2M,& JTCIT, - Q C 

The laminar profile information is considered next. 

(FlO) 

Typical supersonic laminar boundary layer velocity and temperature profiles 
for air are illustrated in figure 36. These were obtained using the computer 
program of Price and Harris (ref. 110). Velocity profiles have a large region 
in which the velocity increases linearly with distance from the wall. Above 
the linear region the profile curves to asymptotically approach the free-stream 
velocity. The temperature profiles show the temperature to be near the free-stream 
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value at the outer edge of the boundary layer and to increase to the so-called 
recovery temperature (a value somewhat below the stagnation temperature) at 
the insulated wall. For present computational purposes these profiles are 
approximated in the manner shown in figure 37. The inner region of the velocity 
profile is approximated appropriately by a straight line. The outer region is 
approximated by a circular arc which is tangent to the linear portion at the 
point of joining and has a horizontal slope at the edge of the boundary layer. 
For this type of approximation, the only quantities which distinguish profiles 
for different free-stream Mach numbers are the coordinates of the end of the 
linear region. Based on the Van Driest profiles shown in reference 138, the 
following values appeared reasonable for the coordinates of this point: 

u/u, y/6 
M, = 4 0.95 0.89 

M, = 8 0.90 0.79 

These values give the following velocity profile equations: 
Linear Range Curved Range 

M, = 4 u/u (Fll) 00 = 1.067 y/6 u/u co = 0.84695 + i(0.15305)2 - (y/6 - 1>2 

M, = 8 u/urn = 1.139 y/6 u/u, = 0.715667 + j(0.284333)2 - (y/6 - 1)2 

These values do not jibe well with the profiles shown in figure 36. The computer 
runs with the Price and Harris code were made well after the task in this ap- 
pendix had been completed. The Mach 8 approximate profile agrees well with 
the Van Driest profile, but that profile closely matches the Price and Harris 
Mach 4 profile. The Mach 4 approximate profile is the poorer of the two; to 
better match the Van Driest profile the linear-circular joining point should 
have at u/uo3 = 0.8, y/6 = 0.6 (determined from an enlargement of the Van Driest 
report figure). As it is, this profile closely matches the Price and Harris 
Mach 8 profile. 

The temperature profiles are approximated by a cubic equation as indicated 
in figure 37. Inasmuch as a cubic has four coefficients, four pieces of in- 
formation about the curve can be specified to define the curve. The four items 
of information to be used are indicated in the figure. The curve has to go 
through the outer edge point (l,l), and it is to have a zero slope at this 
point. It is also to go through a specified value at the wall which depends 
on M,. An intermediate point is selected which makes the curve have a shape 
appropriate to the M, conditions. This results in a nonzero slope at the 
wall; a more sensible curve would have zero slope at the wall and a slightly 
negative dT/dy at the outer edge. The particular constraints selected and 
the resulting equations are given below. 

(y/6, T/T,) coordinates 
M, = 4 (0,4.2), (0.35, 4.1), (1,l) 

M, = 8 (0,12.4), (0.33, lO.O), (1,l) 

M, = 4 T/T, = 9.2444(y/Q3 - 15.2889(y/Q2 + 2.8444 y/6) + 4.2 012) 

M, = 8 T/T, = 26.55(~/6)~ - 41.7(~/S)~ + 3.75 y/6 + 12.4 

The Mach 4 approximate temperature profile is adequate. The Mach 8 profile, 
as might be expected from the terrible zero-slope choice for the outer boundary 
condition, poorly represents the theoretical profile in the outer region. 
The Mach 8 ray path results should therefore be considered with some suspicion. 
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Equation (FlO) will now be used to calculate the nondimensional radius of 
curvature at the caustic for the two Mach number conditions and a range of con- 
vection velocity ratios. For a reason to be given shortly, only the linear 
velocity profiles will be used in this exercise. For this case the veloc- 
ity and temperature profiles respectively, may be represented by, respectively, 

U = AY 

and 

P = aY3 + bY2 -I- CY + d 

Differentiating yields 

U' = AY' 

P' = (3aY2 + 2bY + c)Y' 

and hence 

S=A 

Q = 3aY2 + 2bY + c 

The radius of the curvature at the caustic is thus 

r 
c= 

2Mm2 (1 - Tl12 
6 2M,A aYc3 + bYc2 + cYc + d - (3aYc 2 + 2bYc + C) 

The remaining problem is to determine Y . From equation (F7), the caustic 
height, Yc, may be found from the soluti& of the polynomial equation 

(AYc -n)2 = 
aY c3 + bYc2 + cYc + d 

Mm2 
(Fl3) 

The reason for restricting the application to the linear velocity profile region 
lies in this step of the problem. Equation (F13) is a cubic equation and one 
may find its solution directly. For the outer nonlinear velocity profile, 
equation (F13) would be a sixth degree polynomial. The roots of such a poly- 
nomial are easily found by numerical procedures, but this was not pursued here. 
Continuing with the solution of equation (F13), the equation may be expressed 
in the form 

YC3 + BlYc2 + B2Yc + 6, = 0 

where 

b M 2 

B,= -; 
2A2 c+2 AoM 

, 8,= 
co d - Ma202 

a 3 B,= a 

Using the formula for the solution of a cubic equation, the desired root is 

Y 
C 

= 2&i? cos(a/3 + 240') - Bl/3 
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where 2 

G= 
38,-B1 

9 

a = cos-l & 

H= 
9B182-2703-2813 

54 

The preceding results provide an algebraic means for determining Y and 
r /a for the assumed case of a linear velocity profile. Taking the valEes of 
At a, b, and c from the profile equations (Fll) and (F12), values of Y and 
r /6 were computed and the results are included in Table Fl. These regults 
w?ll be discussed later. Also included in the table are results for the non- 
linear portion of the velocity profile as well as results concerning the length 
of the horizontal traverse of the ray from entry point to the caustic. These 
additional results are from the second method of approach, and this method will 
be discussed next. 

The trajectory of the ray path can be obtained by numerical integration 
of the ray path differential equation, equation (F5). This procedure does not 
yield a radius of curvature, however, and an additional approximate technique 
must be used. A very simple and attractive method is to approximate the trajec- 
tory near the caustic by a concave upward parabola and to take the radius of 
curvature of the parabola at its vertex to be the radius of curvature of the 
ray path at the caustic. Inasmuch as the slope of the parabola is zero at the 
vertex, the radius of curvature is again obtained from equation (F6). For a 
parabola of the form 

Y = y1x2 + y2x + y3 

the result is simply 

r 
c=- 1 
6 2Yl 

The location of the caustic is the vertex location, and this is given by 

The method is seen to be quite straightforward, and the specific details are 
discussed next. 

The integration problem is an initial-value one, and specifying that 
X = Y = 1.0, equation (F5) was integrated using the standard Runge-Kutta 
fourth-order method (which is equivalent in the present case, to applying 
Simpson's integration rule to the problem). A numerical step size of 
AY = -0.01 was used until Y - Y = 0.03, and then the step size was reduced 
to AY = -0.001. The integratiok was automatically terminated very near the 
caustic; in all cases the Y of the last computed point was within .OOl of 
the caustic. 

The parabolic curve was fit in a least squares manner to the trajectory 
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points. Since the computed path is generally not a quadratic one, the computed 
radius of curvature depends on which points are selected for the curve fit. 
To determine the effect of the number of points on the radius of curvature, 
Y /6 was computed for the cases of fits through the last 3, 5, 10, and 20 
pgints. Generally the 3-point and 5-point results agreed within 0.001. It 
was found that for M = 4 and n < 0.5, the percent change in r 16 in going 
from 5 points to 20 points was iess than 3% (the greatest chanie occurred for 
n = 0.7 and was 9%). For M, = 8 and n < 0.6, the percent change in r /6 
in going from 5 to 20 points was less tEan 2% (the maximum change occugred for 
n = 0.8 and 13%). Since method 1 provided the correct values of r I6 in the 
linear profile range, the accuracy of the numerical procedure couldCbe assessed. 
For the r /6 values obtained using the 3 or 5 point procedures, the greatest 
percent e&or was -3.2% (occurred for n = 0.7, M, = 8). Thus method 2 appears 
quite sufficient, and the results for the nonlinear profile range can be accepted 
with some confidence. 

The final results are presented in table Fl. The radius results were 
presented in figure 20. The figure illustrates that there is little difference 
between the two Mach number results, and that the slower the convection speed 
of the source, the larger the radius of curvature at the caustic. The range 
of Us k which has been found from free-stream hot-wire measurements is in- 
dicated on the figure, and it is seen that corresponding values of r,/b fall 
between 0.36 and 0.76 for M, = 4 and between 0.256 and 0.36 for M, = 8. 

Table Fl also shows that the horizontal traverse of a ray from point 
boundary layer entry to the caustic varies from about &s to l@. Some ray 
trajectories through the M, = 4 laminar boundary are shown in figure 21. 

As a final item of information, the difference in direction between the 
wave normal and the ray path will be considered. In Appendix D it was shown 
that the wave angle from the horizontal is just the local relative Mach angle, 
an expected result. Thus the angle of the wave normal from the horizontal is 

8 = cos-l M -lM a 

“YF 

For the ray path, since dy/dx is the tangent of the angle from the horizontal 
of the path, equation (F5) provides the needed result. The ray path angle is thus 

y = tan-l 
/(g - n)2 Ma2 5 - 1 

urn T 
Tco 

(; - n)(l - ; ,Mm2 T + 1 
co 03 

To illustrate the magnitude of the difference between the two angles, these ang 
have been computed for a Mach 4 boundary layer and a stationary shock (n = 0). 
The results are shown in figure 38, where the respective angles are plotted 
against y/6. The ray angle decreases more rapidly than the wave normal angle 
in the outer portion of the boundary layer. From y/6 of about 0.8 to 0.5 
(M from 2.9 to 1.3), both angles decrease at nearly the same rate, with the 
angles differences remaining in the 20' - 26O range. The maximum difference 
of 26.4O occurs at y/6 = 0.67 (M = 2.01). 

.es 
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TABLE Fl. - CAUSTIC LOCATION ANU RAY PATH 
TRAITS IN LAMINAR BOUNDARY LAYERa 

Acoustic source 
I 

Radius of 
convection speed ; curvature 

Coordinatgs 
ofcaustic 

ratio, us/u I m at caustic 
-_(- ~ ---~------L _~..-- -.* 

I 
I ;- 

0.7 
I 

0.6 
/ 0.5 
/ 

0.4 
I I 0.3 

I 0.2 

0.1 
I 
I 0 

/ 0.8 

I 0.7 
! 

0.6 
I 0.5 

0.4 

0.3 

0.2 

1 0.1 

I 0 
I 
1 - 

M, = 4 

0.309 0.745, 0.901 

0.388 0.691, 0.831 

0.531 I 0.591, 0.763 

0.689 I 0.480, 0.697 
I 

0.864 0.359, 0.631 
I 

1.060 0.226, 0.565 
I 

1.282 I 
I 

0.0798, 0.497 

1.541 I -0.0820, 0.428 
-+ -. -.-_ -- .- . , _- -----.- 

I Ma=8 

0.237 0.762, 0.858 

0.280 0.739, 0.787 

0.427 0.639, 0.726 

0.592 0.529, 0.665 

0.774 0.405, 0.604 

0.976 I 0.267, 0.541 

1.203 0.115, 0.478 

1.761 -0.0524, 0.412 

1.761 -0.273, 0.344 
~---. _ -- --_,- -._c 

i - 

I- 

- r. . 

--. 

_ -.. 

. . . c .--.. ----- _- -- 

Total horizontal! 
traverse from 
entry to caustic 
--- _ -_ ---__--I 

0.255 

0.309 

0.409 

0.520 

0.641 

0.774 

0.420 

1.082 
__ __---. ---- i 

0.238 I 
0.261 ! 4 

0.361 I 

0.471 I 
0.595 I 
0.733 I 

0.885 I 

1.052 I 

1.237 
---F-l 

a All lengths nondimensionalized by boundary layer thickness. 

b Ray enters boundary layer at 1.0, 1.0. 
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Appendix G 

Caustic Layer Height for Plate at an Angle of Attack 

In this section, the height of the caustic layer will be determined for 
a case of a flat plate pitched forward to reduce the local Mach number. Once 
the necessary relations have been derived, calculations will be made for the 
example cases of: (1) a plate pitched forward in a Mach 4 tunnel so that the 
local Mach number is 2, and (2) a plate pitched in a Mach 4.5 tunnel so that 
the local Mach number is 3. For the examples the laminar boundary layer, Mach 
number and velocity profiles were obtained using the computer code of Price 
and Harris (ref. 110); tabulated profile information may also be found in the 
report of Mack, ref. 206, for M < 5). 

The height of the caustic layer is the height where the flow velocity 
relative to the downstream velocity of the shock is sonic. At this height, 
then, 

u-u =a 
S 

where u 
S 

is the shock source convection velocity and a is the local speed 
of sound. For the ultimate purpose of using laminar boundary layer profile 
information, this equation can more conveniently be expressed in the form 

U 
U s M - =- - 
% TO M-l 

At the caustic this relation holds locally for the region above the plate. 
If the region upstream and downstream of the plate's leading edge shock are 
denoted with subscripts 1 and 2, respectively, equation (Gl) may be written as 

u2 us2 M2 - =- - 
U a2 U 002 3-l 

(G2) 

The quantities M2 and 
ary layer profile 

u2 /u 
information " f 

are to be obtained from the laminar bound- 
or the given free-stream Mach number M . The 

quantity M can be obtained from a given M 
w$here is, however, 

by the use of obliquz2shock 
relations. no such simple %ans of obtaining us2 for a 
given usl. The task in this appendix is essentially to determine 
the upstream flow conditions, the plate angle, and usl/u 

us2, given 

031. 

The geometry and nomenclature for the pitched plate problem are shown in 
figure 39. From the figure, u 
distance along the plate from s&e 

may be seen to equal dx/dt, where x is the 
leading edge to the location of the incoming 

acoustic shock. Thus the problem is to find z?, where the dot refers to time 
differentiation. From the figure, it is seen that one can write, using the 
law of sines, 

-=. X 
(G3) sin p - sin(180' - (p+n)) 

and hence, 

“=-AL.- 
sin p sin(P+n) 
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As seen in the figure, i is the velocity al?ng the leading edge shock of the 
shock intersection point, Q, and hence i: = f. Therefore, from equation (G3), 

;,=E sin p -I__ 
sin(p+n) 

The problem is thus reduced to that of finding i and p. i will be found 
first. 

By using the law of sines and differentiating, one finds that 

sin c1 ;=; - 
sin y 

But ; is just and this may be regarded as a known quantity, given the 
value of usl 031. IU 

us1Y Let usl/uml = J. Continuing, 

i = us1 * 

i=u sin c1 
sl sin(cr+Ss) 

Now ~1 is the Mach angle of the moving source, and therefore, 

sin a = 1 
M 4 -M sl 

Since Msl/M,,l = usl/uml = J, equation (G4) may be written as 

sin c1 = M ,,,1 6 - J) 

and hence ~1 can be considered know. ? thus becomes 

J 
a . ml 

f = 1 - J sin(o+Os) 

(G4) 

(G6) 

Inasmuch as 6 comes from oblique.shock relations, equations (G5) and (G6) 
provide the me&s for determining f. The angle p is next determined. 

To find p, the angle between the acoustic shock and leading edge shock, 
a closer examination of the intersection between the two shocks is needed. 
The intersection region and additional nomenclature are shown in figure 40. 
The intersection point Q can be considered as a new source of sound emanating 
into the region behind the leading shock as the intersection point moves up 
the shock line. A vorticity wave also originates at this point and travels 
with the flow (see Moore, ref. 152), but this will not be shown in the diagram 
or discussed further. The acoustic source wave is shown at two instances of 
time, t. and t.. At time t. 
from point 

a cylindrical pulse wave is considered emitted 
Q.? and the cent& of this pulse moves downstream at the local 

flow velocity? At time t. the intersection point has moved to Q., and the 
original pulse is now cent J red around the point 
where At = t. - t.. 

R and has a radiu4 of am2At, 
The point R has moved a distance n = Mm2aco2At. 

If the radiu&of t*e cylindrical sound pulse is less than the distance from 
the center of the pulse to the point Qj (i.e., if p < s), then an envelope 
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is formed which is identified as the refracted wave. If the radius is greater 
than the distance to point Q. (i.e., if p > s), then no envelope is formed 
and, as discussed by Moore, the refracted disturbance is described as an 
attenuating pressure wave. 

In the figure, the line segments involved in the pertinent triangles have 
been darkened. From the geometry 

p = 180° - (n + nr) 

IT = 9o" - 5 

(G7) 

<=W-E ((3) 

Substituting equations (G8) and (G9) into (G7) yields 

p = 9o" -q+W-E (G10) 

As seen from the figure, 

w = cos-l E (G11) 

Application of the law of sines gives 

E = sin-' (z sin n) 

Furthermore, 

p = aa2At 

m = iAt 

and 

S2 = m2 + n2 - 2mn cos n 

with 

n=M c.Q?& 

Thus 

s = At J t2 + (M,,2am2) 
2 - 2; MW2aW2 cos 11 

All of the terms on the right-hand side of equation (GlO) may now be evaluated, 
and hence p can be determined. The angle n can be obtained from oblique 
shock relations; expressions for m, p, and s are available and thus w and 
E may be determined from equations (Gil) and (G12). 

All of the relations and quantities necessary for the determination of 
G have now been developed or discussed. All that remains are the example cal- 
culations. For the first example, the tunnel Mach number is chosen to be 4.0, 
and the tunnel stagnation temperature is assumed to be 322 K (580' R). From 
the oblique shock chart 4 of reference 105, the plate angle, 8 , is seen to be 
about 28 for the local Mach number of 2. The shock angle, 0' 'is 42.3O, as 
determined from chart 2. From interpolation of Laufer's free$tream convection 
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velocity measurements (ref. 57) the ratio J = usl/uml is about 0.49. The 
calculations and results are as follows. 

lj=8 - BP = 42.3 - 28O = 14.3' 
S 

ool = c$ = 175.6 a 
01 

where 
-1 

Tml'Tol = [l + (y-l)M2] 

-1 a = sin M ool tl - J) = 

a 
;= & 031 

sin(a + es) = 

m/set 

= 0.2381 

29.4O 

177.7 m/set 

2 sin28s-1)(M_12sin26s+5) 
=a 031 36MW12 sin201 

= 268.2 m/set 

(formula from ref. 106) 

s = At i + (M,2aa2)2 - 2i Mm2a,,2 cos q 

= 366.9 At m 

P = am2 At = 268.2 At m 

w = cos -l E = 43.0° 

E = sin-' ' At 
(s sin n) ? 6.9' 

p = 9o" - rj + w - E = 111.8O 

It may be noted that the angle below the horizontal of the refracted acoustic 
shock is 180' - (p + 8 >, and in the present case this value is 25.9O. Thus, 
the acoustic shock is gent upward by 3.4' upon passage through the leading edge 
shock. 

U =g=i sin p 
s2 sin(P + rl) 

= 204.2 m/set 

U cd2 = Mcopm2 = 536.4 m/set 

Hence, the caustic, which is located when equation (G2) is satisfied, occurs 
where 

u2 0.38M2 

-= M2-1 
U m2 

(Gl3) 
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Using Mach 2 velocity and Mach number boundary layer profiles, equation (G13) 
was found, by trial-and-error, to be satisfied at y/6 =: 0.73. 

In the second example, the free-stream Mach number is 4.5 and the stag- 
nation temperature is 311 K (560 R). From reference 105 the value of the 
plate angle to reduce the local Mach number to 3.0 is 17.7O and the correspon- 
ding shock angle is 28.9O. The result comparable to equation (G13) is 

u2 0.536 M2 
-= 
U m2 M2 - 1 

Using Mach 3 profile information, this equation was found to be satisfied 
at y/6 =: 0.75. 
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Figure 31.- Geometry for ray tube area determination. 
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